[1]

Fengel D, Wegener G. 1984. Wood: chemistry, ultrastructure, reactions. Berlin, Germany: Walter de Gruyter. xiii, 613 pp

[2]

Hamilton MG, Freeman JS, Blackburn DP, Downes GM, Pilbeam DJ, et al. 2017. Independent lines of evidence of a genetic relationship between acoustic wave velocity and kraft pulp yield in Eucalyptus globulus. Annals of Forest Science 74:17

doi: 10.1007/s13595-017-0617-2
[3]

Silva JC, Borralho NMG, Araújo JA, Vaillancourt RE, Potts BM. 2009. Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genetics & Genomes 5:291−305

doi: 10.1007/s11295-008-0174-9
[4]

Santos GA, Nunes ACP, Resende MDV, Silva LD, Higa A, et al. 2016. Genetic control and genotype-by-environment interaction of wood weight in Eucalyptus clones in the state of Rio Grande do Sul, Brazil. Revista Árvore 40:867−76

doi: 10.1590/0100-67622016000500010
[5]

Gao S, Wang X, Wiemann MC, Brashaw BK, Ross RJ, et al. 2017. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Annals of Forest Science 74:27

doi: 10.1007/s13595-017-0623-4
[6]

Viana LC, Trugilho PF, Hein PRG, Moreira da Silva JR, Lima JT. 2010. Modelos de calibração e a espectroscopia no infravermelho próximo para predição das propriedades químicas e da densidade básica da madeira de Eucalyptus. Ciência Florestal 20:367−76

doi: 10.5902/198050981859
[7]

Zulak KG, Bohlmann J. 2010. Terpenoid biosynthesis and specialized vascular cells of conifer defense. Journal of Integrative Plant Biology 52:86−97

doi: 10.1111/j.1744-7909.2010.00910.x
[8]

Kelkar VM, Geils BW, Becker DR, Overby ST, Neary DG. 2006. How to recover more value from small pine trees: essential oils and resins. Biomass and Bioenergy 30:316−20

doi: 10.1016/j.biombioe.2005.07.009
[9]

Neis FA, de Costa F, de Araújo AT Jr, Fett JP, Fett-Neto AG. 2019. Multiple industrial uses of non-wood pine products. Industrial Crops and Products 130:248−58

doi: 10.1016/j.indcrop.2018.12.088
[10]

Luan Q, Tao X, Diao S, Ding X, Jiang J. 2021. Methods, characteristics, variance, and genetics of pine oleoresin components, and their potential for renewable and sustainable energy. Studies in Natural Products Chemistry 68:221−53.

doi: 10.1016/B978-0-12-819485-0.00018-9
[11]

Luan Q, Diao S, Sun H, Ding X, Jiang J. 2022. Prediction and comparisons of turpentine content in Slash pine at different slope positions using near-infrared spectroscopy. Plants 11:914

doi: 10.3390/plants11070914
[12]

Ding X, Li Y, Zhang Y, Diao S, Luan Q, et al. 2023. Genetic analysis and elite tree selection of the main resin components of slash pine. Frontiers in Plant Science 14:1079952

doi: 10.3389/fpls.2023.1079952
[13]

Diao S, Zhang Y, Luan Q, Ding X, Sun J, et al. 2022. Identification of TPS-d subfamily genes and functional characterization of three monoterpene synthases in Slash pine. Industrial Crops and Products 188:115609

doi: 10.1016/j.indcrop.2022.115609
[14]

Serra S, Fuganti C, Brenna E. 2005. Biocatalytic preparation of natural flavours and fragrances. Trends in Biotechnology 23:193−98

doi: 10.1016/j.tibtech.2005.02.003
[15]

Cunnighan A. 2012. Pine resin: biology, chemistry and applications. Pine Tapping Recent Advances. Bosto: PCA. pp. 1−8

[16]

Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD. 2012. Microbial engineering for the production of advanced biofuels. Nature 488:320−28

doi: 10.1038/nature11478
[17]

da Silva Rodrigues-Corrêa KC, de Lima JC, Fett-Neto AG. 2013.Oleoresins from pine: production and industrial uses. In Natural Products, eds Ramawat K, Mérillon JM. Heidelberg: Springer, Berlin. pp. 4037−60. https://doi.org/10.1007/978-3-642-22144-6_175

[18]

Lai M, Dong L, Yi M, Sun S, Zhang Y, et al. 2017. Genetic variation, heritability and genotype × environment interactions of resin yield, growth traits and morphologic traits for Pinus elliottii at three progeny trials. Forests 8:409

doi: 10.3390/f8110409
[19]

Lai M, Zhang L, Lei L, Liu S, Jia T, et al. 2020. Inheritance of resin yield and main resin components in Pinus elliottii Engelm. at three locations in southern China. Industrial Crops and Products 144:112065

doi: 10.1016/j.indcrop.2019.112065
[20]

Williams CG, Megraw RA. 1994. Juvenile-mature relationships for wood density in Pinustaeda. Canadian Journal of Forest Research 24:714−22

doi: 10.1139/x94-095
[21]

Mao T. 2007. Genetic analysis and combined selection of the growth and material of superior tree progeny of Masson pine. Thesis. Nanjing Forestry University, China.

[22]

Fries A. 1986. Volume growth and wood density of plus tree progenies of Pinus contorta in two Swedish field trials. Scandinavian Journal of Forest Research 1:403−19

doi: 10.1080/02827588609382433
[23]

Belonger PJ, McKeand SE, Jett JB. 1996. Genetic and environmental effects on biomass production and wood density in loblolly pine. In Tree Improvement for Sustainable Tropical Forestry, Proceedings of the QFRI-IUFRO Conference, Caloundra, Queensland, Australia. pp. 307–10.

[24]

Sun X, Zhang S, Li S, Hou Y. 2005. Combined selection of fine families with multiple traits for pulp wood of Larch japonica. Scientia Silvae Sinicae 41:48−54

[25]

Wu HX, Powell MB, Yang JL, Ivković M, McRae TA. 2007. Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Annals of Forest Science 64:1−9

doi: 10.1051/forest:2006082
[26]

Apiolaza L, Chauhan S, Hayes M, Nakada R, Sharma M, et al. 2013. Selection and breeding for wood quality: a new approach. New Zealand Journal of Forestry 58:33−37

[27]

O'hehir JF, Nambiar EKS. 2010. Productivity of three successive rotations of Pinus radiata plantations in South Australia over a century. Forest Ecology and Management 259:1857−69

doi: 10.1016/j.foreco.2009.12.004
[28]

Li Y, Luan Q, Shen D, Chen B, Jiang J, et al. 2012. Study on genetic variation of resin components among open-pollinated families of slash pine. Forest Research 25:773−79

doi: 10.13275/j.cnki.lykxyj.2012.06.007
[29]

Haapanen M. 1996. Impact of family-by-trial interaction on the utility of progeny testing methods for Scots pine. Silvae Genetica 45:130−35

[30]

Costa e Silva J, Potts BM, Dutkowski GW. 2006. Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genetics & Genomes 2:61−75

doi: 10.1007/s11295-005-0025-x
[31]

Campbell RK. 1992. Genotype × environment interaction: a case study for Douglas-fir in western Oregon. Research Paper. Res. Pap. PNW-RP-455. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR. 21 pp. https://doi.org/10.2737/PNW-RP-455

[32]

Lundströmer J, Karlsson B, Berlin M. 2020. Strategies for deployment of reproductive material under supply limitations - a case study of Norway spruce seed sources in Sweden. Scandinavian Journal of Forest Research 35:495−505

doi: 10.1080/02827581.2020.1833979
[33]

Sixto H, Salvia J, Barrio M, Ciria MP, Cañellas I. 2011. Genetic variation and genotype-environment interactions in short rotation Populus plantations in southern Europe. New Forests 42:163−77

doi: 10.1007/s11056-010-9244-6
[34]

Alexandru AM, Mihai G, Stoica E, Curtu AL. 2023. Multi-trait selection and stability in Norway Spruce (Picea abies) provenance trials in Romania. Forests 14:456

doi: 10.3390/f14030456
[35]

Yan W, Frégeau-Reid J. 2008. Breeding line selection based on multiple traits. Crop Science 48:417−23

doi: 10.2135/cropsci2007.05.0254
[36]

Smith HF. 1936. A discriminant function for plant selection. Annals of Eugenics 7:240−50

doi: 10.1111/j.1469-1809.1936.tb02143.x
[37]

BuenoJ, Vencovsky R. 2000. Efficiency of combined selection over sequential selection in forest tree progeny trials. Silvae Genetica 49:169−73

[38]

Dong P, Chang J, Huang L, Li C. 2015. Application of multi-factor comprehensive appraisal in maize breeding. Agricultural Science & Technology 16:1614−1616, 1638

doi: 10.3969/j.issn.1009-4229.2015.08.012
[39]

Jia Q, Zhang H, Zhang L. 2016. Variation analysis of hybrid larch families and superior famlies selection. Journal of Northeast Forestry University 44:1−7

doi: 10.3969/j.issn.1000-5382.2016.04.001
[40]

Dong L, Li T, Huang W, Wang B, Xu L, et al. 2021. Screening and comprehensive evaluation of superior strains of Zhejiang safflower camellia oleifera. Journal of Central South Forestry University 41:35−45

[41]

Ding X, Diao S, Luan Q, Wu HX, Zhang Y, et al. 2022. A transcriptome-based association study of growth, wood quality, and oleoresin traits in a slash pine breeding population. PLoS Genetics 18:e1010017

doi: 10.1371/journal.pgen.1010017
[42]

Ding X, Tao X, Diao S, Luan Q, Jiang J. 2020. Estimation of wood basic density in a Pinus elliottii stand using Pilodyn and Resistograph measurements. Journal of Nanjing Forestry University (Natural Sciences Edition) 44:142−48

doi: 10.3969/j.issn.1000-2006.201906026
[43]

Tham VTH, Inagaki T, Tsuchikawa S. 2018. A novel combined application of capacitive method and near-infrared spectroscopy for predicting the density and moisture content of solid wood. Wood Science and Technology 52:115−29

doi: 10.1007/s00226-017-0974-x
[44]

Zhang S, Jiang J, Xu Y, Luan Q. 2017. Study on the modulus of elasticity non-destructive evaluation technique of slash pine standing tree. Forestry Scientific Research 30:75−80

doi: 10.13275/j.cnki.lykxyj.2017.01.011
[45]

Li Y, Jiang J, Luan Q. 2012. Determination and genetic analysis of lipid-producing power, resin density and oleresin content of slash pine. Journal of Beijing Forestry University 34:48−51

doi: 10.13332/j.1000-1522.2012.04.022
[46]

Cuevas J, Montesinos-López O, Juliana P, Guzmán C, Pérez-Rodríguez P, et al. 2019. Deep kernel for genomic and near infrared predictions in multi-environment breeding trials. G3 Genes|Genomes|Genetics 9:2913−24

doi: 10.1534/g3.119.400493
[47]

R Core Team. 2014. R: a language and environment for statistical computing.

[48]

Vazquez AI, Bates DM, Rosa GJM, Gianola D, Weigel KA. 2013. Technical note: an R package for fitting generalized linear mixed models in animal breeding. Journal of Animal Science 88:497−504

doi: 10.2527/jas.2009-1952
[49]

Covarrubias-Pazaran G. 2016. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One 11:e0156744

doi: 10.1371/journal.pone.0156744
[50]

Revelle W. 2020. How to: use the psych package for factor analysis and data reduction. Northwestern University, Department of Psychology, Evanston, IL, USA. 95 pp. https://personality-project.org/r/psych/HowTo/factor.pdf

[51]

Wickham H. 2011. ggplot2. WIREs Computational Statistics 3:180−85

doi: 10.1002/wics.147
[52]

Yuan C, Zhang Z, Jin G, Zheng Y, Zhou Z, et al. 2021. Genetic parameters and genotype by environment interactions influencing growth and productivity in Masson pine in east and central China. Forest Ecology and Management 487:118991

doi: 10.1016/j.foreco.2021.118991
[53]

Liu Q, Zhou Z, Fan H, Liu Y. 2013. Genetic variation and correlation among resin yield, growth, and morphologic traits of Pinus massoniana. Silvae Genetica 62:38−43

doi: 10.1515/sg-2013-0005
[54]

Jia Q, Liu G, Zhao J, Li K, Sun W. 2022. Variation analyses of growth traits in half-sib families of Korean pine and superior families selection. Journal of Nanjing Forestry University (Natural Sciences Edition) 46:109−16

doi: 10.12302/j.issn.1000-2006.202107040
[55]

Baltunis BS, Wu HX, Powell MB. 2007. Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of Pinus radiata at two locations in Australia. Canadian Journal of Forest Research 37:2164−74

doi: 10.1139/X07-061
[56]

Lei L, Pan X, Zhang L, Ai Q, Li B, et al. 2015. Genetic variation and comprehensive selection of turpentine composition in high-yielding slash pine (Pinus elliottii). Forest Research 28:804−09

doi: 10.3969/j.issn.1001-1498.2015.06.007
[57]

Li Y, Luan Q, Jiang J. 2012. Study on genetic variation of rosin components in open-pollinated slash pine families. Forestry Science Research 25:773−79

[58]

Li Y, Ding X, Jiang J, Luan Q. 2020. Inheritance and correlation analysis of pulpwood properties, wood density, and growth traits of slash pine. Forests 11:493

doi: 10.3390/f11050493
[59]

Lenz PRN, Nadeau S, Mottet MJ, Perron M, Isabel N, et al. 2020. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evolutionary Applications 13:76−94

doi: 10.1111/eva.12823
[60]

Hannrup B, Cahalan C, Chantre G, Grabner M, Karlsson B, et al. 2004. Genetic parameters of growth and wood quality traits in Picea abies. Scandinavian Journal of Forest Research 19:14−29

doi: 10.1080/02827580310019536
[61]

Johnson LPV. 1942. Studies on the relation of growth rate to wood quality in Populus hybrids. Canadian Journal of Research 20:28−40

doi: 10.1139/cjr42c-003
[62]

Park YS, Weng Y, Mansfield SD. 2012. Genetic effects on wood quality traits of plantation-grown white spruce (Picea glauca) and their relationships with growth. Tree Genetics & Genomes 8:303−11

doi: 10.1007/s11295-011-0441-z
[63]

Gaspar MJ, Lousada JL, Rodrigues JC, Aguiar A, Almeida MH. 2009. Does selecting for improved growth affect wood quality of Pinus pinaster in Portugal. Forest Ecology and Management 258:115−21

doi: 10.1016/j.foreco.2009.03.046
[64]

Hood S, Sala A. 2015. Ponderosa pine resin defenses and growth: metrics matter. Tree Physiology 35:1223−35

doi: 10.1093/treephys/tpv098
[65]

López-Álvarez Ó, Zas R, Marey-Perez M. 2023. Resin tapping: a review of the main factors modulating pine resin yield. Industrial Crops and Products 202:117105

doi: 10.1016/j.indcrop.2023.117105
[66]

Hazel LN. 1943. The genetic basis for constructing selection indexes. Genetics 28:476−90

doi: 10.1093/genetics/28.6.476
[67]

Walsh B, Lynch M. 2018. Evolution and selection of quantitative traits. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198830870.001.0001

[68]

Amaya A, Martínez R, Cerón-Muñoz M. 2021. Selection indexes using principal component analysis for reproductive, beef and milk traits in Simmental cattle. Tropical Animal Health and Production 53:378

doi: 10.1007/s11250-021-02815-y
[69]

Fries A. 2012. Genetic parameters, genetic gain and correlated responses in growth, fibre dimensions and wood density in a Scots pine breeding population. Annals of Forest Science 69:783−94

doi: 10.1007/s13595-012-0202-7