[1]

BPS-statistics Indonesia. 2023. Indonesian Cocoa Statistics 2022. Vol. 7. 73 pp. www.bps.go.id/en/publication/2023/11/30/ef4419ba62e6ec7d4490218e/statistik-kakao-indonesia-2022.html

[2]

Ploetz R. 2016. The impact of diseases on cacao production: a global overview. In Cacao Diseases, eds. Bailey B, Meinhardt L. Cham: Springer. pp. 33−59. doi: 10.1007/978-3-319-24789-2_2

[3]

Marelli JP, Guest DI, Bailey BA, Evans HC, Brown JK, et al. 2019. Chocolate under threat from old and new cocao diseases. Phytopathology 109(8):1331−43

doi: 10.1094/PHYTO-12-18-0477-RVW
[4]

Delgado-Ospina J, Molina-Hernández JB, Chaves-López C, Romanazzi G, Paparella A. 2021. The role of fungi in the cocoa production chain and the challenge of climate change. Journal of Fungi 7(3):202

doi: 10.3390/jof7030202
[5]

Mullen JM, Gilliam CH, Hagan AK, Morgan-Jones G. 1991. Canker of dogwood caused by Lasiodiplodia theobromae, a disease influenced by drought stress or cultivar selection. Plant Disease 75(9):886−89

doi: 10.1094/PD-75-0886
[6]

Smith H, Wingfield MJ, Coutinho TA, Crous PW. 1996. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany 62(2):86−88

doi: 10.1016/s0254-6299(15)30596-2
[7]

Burgess T, Wingfield BD, Wingfield MJ. 2001. Comparison of genotypic diversity in native and introduced populations of Sphaeropsis sapinea isolated from Pinus radiata. Mycological Research 105(11):1331−39

doi: 10.1017/S0953756201005056
[8]

Flowers J, Hartman J, Vaillancourt L. 2003. Detection of latent Sphaeropsis sapinea infections in Austrian pine tissues using nested-polymerase chain reaction. Phytopathology 93(12):1471−77

doi: 10.1094/PHYTO.2003.93.12.1471
[9]

Khanzada MA, Lodhi AM, Shahzad S. 2004. Mango dieback and gummosis in Sindh Pakistan caused by Lasiodiplodia theobromae. Plant Health Progress 5(1):13−18

doi: 10.1094/php-2004-0302-01-dg
[10]

Ko WH, Wang IT, Ann PJ. 2004. Lasiodiplodia theobromae as a causal agent of kumquat dieback in Taiwan. Plant Disease 88(12):1383

doi: 10.1094/PDIS.2004.88.12.1383A
[11]

Ismail AM, Cirvilleri G, Polizzi G, Crous PW, Groenewald JZ, et al. 2012. Lasiodiplodia species associated with dieback disease of mango (Mangifera indica) in Egypt. Australasian Plant Pathology 41:649−60

doi: 10.1007/s13313-012-0163-1
[12]

Adu-Acheampong R, Archer S, Leather S. 2012. Resistance to dieback disease caused by Fusarium and Lasiodiplodia species in cacao (Theobroma cacao L.) Genotypes. Experimental Agriculture 48(1):85−98

doi: 10.1017/s0014479711000883
[13]

Borges RCF, Santos MDM, Macedo MA, Martins I, Nascimento AG, et al. 2015. A trunk canker disease of Tectona grandis induced by Lasiodiplodia theobromae in Brazil. New Disease Reports 31(1):26

doi: 10.5197/j.2044-0588.2015.031.026
[14]

Nam MH, Park MS, Kim HS, Kim Ti, Lee EM, et al. 2016. First report of dieback caused by Lasiodiplodia theobromae in strawberry plants in Korea. Mycobiology 44(4):319−24

doi: 10.5941/MYCO.2016.44.4.319
[15]

Li HL, Jayawardena RS, Xu W, Hu M, Li XH, et al. 2019. Lasiodiplodia theobromae and L. pseudotheobromae causing leaf necrosis on Camellia sinensis in Fujian Province, China. Canadian Journal of Plant Pathology 41(2):277−84

doi: 10.1080/07060661.2019.1569559
[16]

Serrato-Diaz LM, Mariño YA, Guadalupe I, Bayman P, Goenaga R. 2020. First report of Lasiodiplodia pseudotheobromae and Colletotrichum siamense causing cacao pod rot, and first report of C. tropicale causing cacao pod rot in Puerto Rico. Plant Disease 104(2):592

doi: 10.1094/pdis-06-19-1333-pdn
[17]

Chen J, Zhu Z, Fu Y, Cheng J, Xie J, Lin Y. 2021. Identification of Lasiodiplodia pseudotheobromae Causing Fruit Rot of Citrus in China. Plants 10(2):202

doi: 10.3390/plants10020202
[18]

Puig AS, Keith LM, Matsumoto TK, Gutierrez OA, Marelli JP. 2021. Virulence tests of Neofusicoccum parvum, Lasiodiplodia theobromae, and Phytophthora palmivora on Theobroma cocao. European Journal of Plant Pathology 159:851−62

doi: 10.1007/s10658-021-02210-1
[19]

Mbenoun M, Momo Zeutsa EH, Samuels G, Nsouga Amougou F, Nyasse S. 2008. Dieback due to Lasiodiplodia theobromae, a new constraint to cocoa production in Cameroon. Plant Pathology 57(2):381

doi: 10.1111/j.1365-3059.2007.01755.x
[20]

Kannan C, Karthik M, Priya K. 2010. Lasiodiplodia theobromae causes a damaging dieback of cocoa in India. Plant Pathology 59(2):410

doi: 10.1111/j.1365-3059.2009.02192.x
[21]

Alvindia DG, Gallema FLM. 2017. Lasiodiplodia theobromae causes vascular streak dieback (VSD)–like symptoms of cacao in Davao Region, Philippines. Australasian Plant Disease Notes 12:54

doi: 10.1007/s13314-017-0279-9
[22]

Asman A, Rosmana A, Bailey BA, Shahin AS, Stream MD. 2020. Lasiodiplodia theobromae: an emerging threat to cocoa causes dieback and canker disease in Sulawesi. Increasing the Resilience of Cacao to Major Pest and Disease Threats in the 21 st Century, Proc. of an Asia-Pacific Regional Cocoa IPM symposium, Australian Centre for International Agricultural Research, 2019. Canberra, Australia: ACIAR. pp. 1−87

[23]

Huda-Shakirah AR, Mohamed Nor NMI, Zakaria L, Leong YH, Mohd MH. 2022. Lasiodiplodia theobromae as a causal pathogen of leaf blight, stem canker, and pod rot of Theobroma cacao in Malaysia. Scientific Reports 12:8966

doi: 10.1038/s41598-022-13057-9
[24]

Ali SS, Asman A, Shao J, Balidion JF, Strem MD, et al. 2020. Genome and transcriptome analysis of the latent pathogen Lasiodiplodia theobromae, an emerging threat to the cocao industry. Genome 63(1):37−52

doi: 10.1139/gen-2019-0112
[25]

Puig AS. 2023. Fungal Pathogens of Cacao in Puerto Rico. Plants 12(22):3855

doi: 10.3390/plants12223855
[26]

Atkinson NJ, Urwin PE. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63(10):3523−43

doi: 10.1093/jxb/ers100
[27]

Paolinelli-Alfonso M, Villalobos-Escobedo JM, Rolshausen P, Herrera-Estrella A, Galindo-Sánchez C, et al. 2016. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response. BMC Genomics 17:615

doi: 10.1186/s12864-016-2952-3
[28]

Yan JY, Zhao WS, Chen Z, Xing QK, Zhang W, et al. 2018. Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Research 25(1):87−102

doi: 10.1093/dnares/dsx040
[29]

Songy A, Fernandez O, Clément C, Larignon P, Fontaine F. 2019. Grapevine trunk diseases under thermal and water stresses. Planta 249:1655−79

doi: 10.1007/s00425-019-03111-8
[30]

Tardieu F. 2013. Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Frontiers in Physiology 4:17

doi: 10.3389/fphys.2013.00017
[31]

Basu S, Ramegowda V, Kumar A, Pereira A. 2016. Plant adaptation to drought stress. F1000Research 5:1554

doi: 10.12688/f1000research.7678.1
[32]

Qaderi MM, Martel AB, Dixon SL. 2019. Environmental factors influence plant vascular system and water regulation. Plants 8(3):65

doi: 10.3390/plants8030065
[33]

Läderach P, Martinez-Valle A, Schroth G, Castro N. 2013. Predicting the future climatic suitability for cocoa farming of the world's leading producer countries, Ghana and Côte d'Ivoire. Climatic Change 119:841−54

doi: 10.1007/s10584-013-0774-8
[34]

Schroth G, Läderach P, Martinez-Valle AI, Bunn C, Jassogne L. 2016. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of The Total Environment 556:231−41

doi: 10.1016/j.scitotenv.2016.03.024
[35]

Medina V, Laliberté B. 2017. A review of research on the effects of drought and temperature stress and increased CO2 on Theobroma cacao L., and the role of genetic diversity to address climate change. Costa Rica: Costa Rica Bioversity International. 51 pp.

[36]

Farrell AD, Rhiney K, Eitzinger A, Umaharan P. 2018. Climate adaptation in a minor crop species: is the cocoa breeding network prepared for climate change? Agroecology and Sustainable Food Systems 42:812−33

doi: 10.1080/21683565.2018.1448924
[37]

Gateau-Rey L, Tanner EVJ, Rapidel B, Marelli JP, Royaert S. 2018. Climate change could threaten cocoa production: effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLoS One 13:e0200454

doi: 10.1371/journal.pone.0200454
[38]

Lahive F, Hadley P, Daymond AJ. 2019. The physiological responses of cacao to the environment and the implications for climate change resilience. a review. Agronomy for Sustainable Development 39:5

doi: 10.1007/s13593-018-0552-0
[39]

Hebbar KB, Apshara E, Chandran KP, Prasad PVV. 2020. Effect of elevated CO2, high temperature, and water deficit on growth, photosynthesis, and whole plant water use efficiency of cocoa (Theobroma cacao L.). International Journal of Biometeorology 64:47−57

doi: 10.1007/s00484-019-01792-0
[40]

Ceccarelli V, Fremout T, Zavaleta D, Lastra S, Imán Correa S, et al. 2021. Climate change impact on cultivated and wild cacao in Peru and the search of climate change-tolerant genotypes. Diversity and Distributions 27(8):1462−76

doi: 10.1111/ddi.13294
[41]

Bostock RM, Pye MF, Roubtsova TV. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annual Review of Phytopathology 52:517−49

doi: 10.1146/annurev-phyto-081211-172902
[42]

Correia B, Pintó-Marijuan M, Neves L, Brossa R, Dias MC, et al. 2014. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Physiologia Plantarum 150(4):580−92

doi: 10.1111/ppl.12110
[43]

Barradas C, Pinto G, Correia B, Castro BB, Phillips AJL, et al. 2018. Drought x disease interaction in Eucalyptus globulus under Neofusicoccum eucalyptorum infection. Plant Pathology 67(1):87−96

doi: 10.1111/ppa.12703
[44]

van Niekerk JM, Strever AE, du Toit PG, Halleen F, Fourie PH. 2011. Influence of water stress on Botryosphaeriaceae disease expression in grapevines. Phytopathologia Mediterranea 50:S151−S165

[45]

Gallé A, Haldimann P, Feller U. 2007. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist 174(4):799−810

doi: 10.1111/j.1469-8137.2007.02047.x
[46]

Volaire F, Thomas H, Lelièvre F. 1998. Survival and recovery of perennial forage grasses under prolonged Mediterranean drought: I. Growth, death, water relations and solute content in herbage and stubble. New Phytologist 140(3):439−49

doi: 10.1111/j.1469-8137.1998.00288.x
[47]

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4):660−84

doi: 10.1016/j.foreco.2009.09.001
[48]

Susilo WA. 2013. Peran petani dalam pengembangan Klon-Klon Lokal di Sulawesi. In Warta Pusat Penelitian Kopi dan Kakao Indonesia. Vol. 25. Jember, Indonesia: Pusat Penelitian Kopi dan Kakao Indonesia (Indonesian Coffee and Cocoa Research Institute (ICCRI)). pp. 1−6. https://warta.iccri.net/wp-content/uploads/2023/06/1.-Agung-Wahyu-Susilo-Peran-Petani-dalam-Pengembangan-Klon-Klon-Lokal-di-Sulawesi.pdf

[49]

Kementerian Pertanian. 2017. Keputusan Menteri Pertanian No. 25/Kpts/KB.020/5/2017 Tentang Pedoman Produksi, Sertifikasi, Peredaran dan Pengawasan Benih Tanaman Kakao. Decisions and Regulations of the Minister of Agriculture. Indonesia: Directorate General of Plantations. https://ditjenbun.pertanian.go.id/regulasi/peraturan-menteri-pertanian/

[50]

Asman A, Rosmana A, Amin N, Bailey BA, Ali SS. 2019. Survival capacity of cacao top grafted with scions infected by vascular streak dieback pathogen: potential source of the disease long-distance spread. Archives of Phytopathology and Plant Protection 52(13−14):1095−103

doi: 10.1080/03235408.2019.1688447
[51]

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. New York: Academic Press Inc. pp. 315–22. doi: 10.1016/b978-0-12-372180-8.50042-1

[52]

Alves A, Crous PW, Correia A, Phillips A. 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28:1−13

[53]

Mayee CD, Datar VV. 1986. Phytopathometry. Tech. Bull. 1. Univ. Press. Marathwada Agriculture University, Parbhani (M. S.).

[54]

Shaner G, Finney RE. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051−56

doi: 10.1094/phyto-67-1051
[55]

Madden LV, Hughes G, Van Den Bosch F. 2007. The study of plant disease epidemics. St. Paul, USA: APS Press. doi: 10.1094/9780890545058

[56]

Desprez-Loustau ML, Marçais B, Nageleisen LM, Piou D, Vannini A. 2006. Interactive effects of drought and pathogens in forest trees. Annals of Forest Science 63:597−612

doi: 10.1051/forest:2006040
[57]

Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, et al. 2011. Climate change and forest diseases. Plant Pathology 60(1):133−49

doi: 10.1111/j.1365-3059.2010.02406.x
[58]

Agustí-Brisach C, Moldero D, Raya MdC, Lorite IJ, Orgaz F, et al. 2020. Water stress enhances the progression of branch dieback and almond decline under field conditions. Plants 9(9):1213

doi: 10.3390/plants9091213
[59]

Oliva J, Stenlid J, Martínez-Vilalta J. 2014. The effect of fungal pathogens on the water and carbon economy of trees: Implications for drought-induced mortality. New Phytologist 203(4):1028−35

doi: 10.1111/nph.12857
[60]

Hossain M, Veneklaas EJ, Hardy GEStJ, Poot P. 2019. Tree host pathogen interactions as influenced by drought timing: linking physiological performance, biochemical defence and disease severity. Tree Physiology 39(1):6−18

doi: 10.1093/treephys/tpy113
[61]

Caldeira MC. 2019. The timing of drought coupled with pathogens may boost tree mortality. Tree Physiology 39(1):1−5

doi: 10.1093/treephys/tpy141
[62]

Batista E, Lopes A, Alves A. 2021. What do we know about Botryosphaeriaceae? an overview of a worldwide cured dataset. Forests 12(3):313

doi: 10.3390/f12030313
[63]

Fischer M, Kassemeyer HH. 2012. Water regime and its possible impact on expression of Esca symptoms in Vitis vinifera: growth characters and symptoms in the greenhouse after artificial infection with Phaeomoniella chlamydospora. Vitis - Journal of Grapevine Research 51(3):129−135

[64]

Lima MRM, Machado AF, Gubler WD. 2017. Metabolomic study of Chardonnay grapevines double stressed with esca-associated fungi and drought. Phytopathology 107(6):669−80

doi: 10.1094/PHYTO-11-16-0410-R
[65]

Sherwood P, Villari C, Capretti P, Bonello P. 2015. Mechanisms of induced susceptibility to Diplodia tip blight in drought-stressed Austrian pine. Tree Physiology 35(5):549−62

doi: 10.1093/treephys/tpv026
[66]

Yildiz A, Benlioglu K, Benlioglu HS. 2014. First report of strawberry dieback caused by Lasiodiplodia theobromae. Plant Disease 98(11):1579

doi: 10.1094/PDIS-11-13-1192-PDN
[67]

Bautista-Cruz MA, Almaguer-Vargas G, Leyva-Mir SG, Colinas-León MT, Correia KC, et al. 2019. Phylogeny, distribution and pathogenicity of Lasiodiplodia species associated with cankers and dieback symptoms of Persian lime in Mexico. Plant Disease 103(6):1156−65

doi: 10.1094/PDIS-06-18-1036-RE
[68]

Moreira-Morrillo AA, Cedeño-Moreira ÁV, Canchignia-Martínez F, Garcés-Fiallos FR. 2021. Lasiodiplodia theobromae (Pat.) Griffon & Maubl [(syn. ) Botryodiplodia theobromae Pat] in the cocoa crop: symptoms, biological cycle, and strategies management. Scientia Agropecuaria 12(4):653−62

doi: 10.17268/sci.agropecu.2021.068
[69]

Rosmana A, Sjam S, Dewi VS, Asman A, Fhiqrah M. 2022. Root and collar rot disease: a new threat to young cacao (Theobroma cacao L.) plants in Sulawesi, Indonesia. Australasian Plant Pathology 51:475−82

doi: 10.1007/s13313-022-00878-5
[70]

Çiftçi O, Özer G, Türkölmez Ş, Derviş S. 2023. Lasiodiplodia theobromae and Neoscytalidium dimidiatum associated with grafted walnut (Juglans regia L.) decline in Turkey. Journal of Plant Diseases and Protection 130:1117−28

doi: 10.1007/s41348-023-00745-5
[71]

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373−99

doi: 10.1146/annurev.arplant.55.031903.141701
[72]

Rohrs-Richey JK, Mulder CPH, Winton LM, Stanosz G. 2011. Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress. New Phytologist 189(1):295−307

doi: 10.1111/j.1469-8137.2010.03472.x
[73]

Olatinwo R, Guo Q, Fei S, Otrosina W, Klepzig KD, et al. 2013. Climate induced changes in vulnerability to biological threats in the Southern United States. In Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource Managers in Southern Forest Ecosystems, eds. Vose JM, Klepzig KD. Boca Raton: CRC Press. pp. 127−72. doi: 10.1201/b15613-10

[74]

Crist CR, Schoeneweiss DF. 1975. The influence of controlled stresses on susceptibility of European white birch stems to attack by Botryosphaeria dothidea. Phytopathology 65(4):369−73

[75]

Úrbez-Torres JR, Leavitt GM, Voegel TM, Gubler WD. 2006. Identification and distribution of Botryosphaeria spp. associated with grapevine cankers in California. Plant Disease 90(12):1490−503

doi: 10.1094/PD-90-1490
[76]

Pitt WM, Huang R, Steel CC, Savocchia S. 2013. Pathogenicity and epidemiology of Botryosphaeriaceae species isolated from grapevines in Australia. Australasian Plant Pathology 42:573−82

doi: 10.1007/s13313-013-0221-3
[77]

Qiu Y, Steel CC, Ash GJ, Savocchia S. 2016. Effects of temperature and water stress on the virulence of Botryosphaeriaceae spp. causing dieback of grapevines and their predicted distribution using CLIMEX in Australia. Acta Horticulturae 1115:171−82

doi: 10.17660/actahortic.2016.1115.26