[1]

Zhang C, Ren Y, Guo S, Zhang H, Gong G, et al. 2013. Application of comparative genomics in developing markers tightly linked to the Pm-2F gene for powdery mildew resistance in melon (Cucumis melo L.). Euphytica 190:157−68

doi: 10.1007/s10681-012-0828-4
[2]

Itagaki K, Sato Y, Tojo M. 2017. Resistance levels of cucumber to Podosphaera xanthii in a growth chamber are related to haustorial formation and hyphal branching frequency. Journal of General Plant Pathology 83:310−15

doi: 10.1007/s10327-017-0731-x
[3]

Beraldo-Hoischen P, Hoefle C, López-Sesé AI. 2021. Fungal development and callose deposition in compatible and incompatible interactions in melon infected with powdery mildew. Pathogens 10:873

doi: 10.3390/pathogens10070873
[4]

Douchkov D, Lueck S, Hensel G, Kumlehn J, Rajaraman J, et al. 2016. The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytologist 212:421−33

doi: 10.1111/nph.14065
[5]

Li B, Zhao Y, Zhu Q, Zhang Z, Fan C, et al. 2017. Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Scientia Horticulturae 220:160−67

doi: 10.1016/j.scienta.2017.04.001
[6]

Jing X, Wang H, Gong B, Liu S, Wei M, et al. 2018. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. Plant Physiology and Biochemistry 124:77−87

doi: 10.1016/j.plaphy.2017.12.039
[7]

Wang S, Yan W, Yang X, Zhang J, Shi Q. 2021. Comparative methylome reveals regulatory roles of DNA methylation in melon resistance to Podosphaera xanthii. Plant Science 309:110954

doi: 10.1016/j.plantsci.2021.110954
[8]

Moolhuijzen P, Ge C, Palmiero E, Ellwood SR. 2023. A unique resistance mechanism is associated with RBgh2 barley powdery mildew adult plant resistance. Theoretical and Applied Genetics 136:145

doi: 10.1007/s00122-023-04392-0
[9]

Wang Y, Nishimura MT, Zhao T, Tang D. 2011. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. The Plant Journal 68:74−87

doi: 10.1111/j.1365-313X.2011.04669.x
[10]

Nie H, Zhao C, Wu G, Wu Y, Chen Y, et al. 2012. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiology 158:1847−59

doi: 10.1104/pp.111.192310
[11]

Zhang Y, Bai Y, Wu G, Zou S, Chen Y, et al. 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal 91:714−24

doi: 10.1111/tpj.13599
[12]

Ma H, Zou F, Li D, Wan Y, Zhang Y, et al. 2023. Transcription factor MdbHLH093 enhances powdery mildew resistance by promoting salicylic acid signaling and hydrogen peroxide accumulation. International Journal of Molecular Sciences 24:9390

doi: 10.3390/ijms24119390
[13]

Zhao Y, Mao W, Tang W, Soares MA, Li H. 2023. Wild Rosa endophyte M7SB41-mediated host plant's powdery mildew resistance. Journal of Fungi 9:620

doi: 10.3390/jof9060620
[14]

Ning Y, Liu J, Song B, Xu H, Liu Z, et al. 2023. Genome-wide analyses of the NAC transcription factor family to reveal the potential candidate genes responding to powdery mildew in balsam pear. Plant Biotechnology Reports 17:917−30

doi: 10.1007/s11816-023-00837-6
[15]

Liu W, Wang X, Song L, Yao W, Guo M, et al. 2023. Comparative transcriptome and widely targeted metabolome analysis reveals the molecular mechanism of powdery mildew resistance in tomato. International Journal of Molecular Sciences 24:8236

doi: 10.3390/ijms24098236
[16]

Ahn E, Fall C, Botkin J, Curtin S, Prom LK, et al. 2023. Inoculation and screening methods for major sorghum diseases caused by fungal pathogens: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina. Plants 12:1906.

doi: 10.3390/plants12091906
[17]

Shen W, Pan L, Fu Y, Suo Y, Zhang Y, et al. 2024. Comparative study on the effectiveness of three inoculation methods for Valsa sordida in Populus alba var. pyramidalis. Biology 13:251

doi: 10.3390/biology13040251
[18]

Li S. 2018. Development of a seedling inoculation technique for rapid evaluation of soybean for resistance to Phomopsis longicolla under controlled conditions. Plant Methods 14:81

doi: 10.1186/s13007-018-0348-x
[19]

Wang J, Yu X, Hu J, Wang Q, Zheng J, et al. 2023. Positive involvement of HCO3 in modulation of melon resistance to powdery mildew. Vegetable Research 3:3

doi: 10.48130/VR-2023-0003
[20]

Sun J, Nie J, Xiao T, Guo C, Lv D, et al. 2024. CsPM5.2, a phosphate transporter protein-like gene, promotes powdery mildew resistance in cucumber. The Plant Journal 117:1487−502

doi: 10.1111/tpj.16576
[21]

Song N, Hu Z, Li Y, Li C, Peng F, et al. 2013. Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew. Gene 524:220−27

doi: 10.1016/j.gene.2013.04.019
[22]

Martínez-Cruz J, Romero D, Hierrezuelo J, Thon M, de Vicente A, et al. 2021. Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity. The Plant Cell 33:1319−40

doi: 10.1093/plcell/koab011
[23]

Frye CA, Innes RW. 1998. An Arabidopsis mutant with enhanced resistance to powdery mildew. The Plant Cell 10:947−56

doi: 10.1105/tpc.10.6.947
[24]

Xu X, Liu X, Yan Y, Wang W, Gebretsadik K, et al. 2019. Comparative proteomic analysis of cucumber powdery mildew resistance between a single-segment substitution line and its recurrent parent. Horticulture Research 6:115

doi: 10.1038/s41438-019-0198-3
[25]

Xiao X, Cheng X, Yin K, Li H, Qiu J. 2017. Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus. Science China Life Sciences 60:891−901

doi: 10.1007/s11427-017-9036-2
[26]

Molina A, Jordá L, Torres MÁ, Martín-Dacal M, Berlanga DJ, et al. 2024. Plant cell wall-mediated disease resistance: current understanding and future perspectives. Molecular Plant 17:699−724

doi: 10.1016/j.molp.2024.04.003
[27]

Cao Y, Diao Q, Lu S, Zhang Y, Yao D. 2022. Comparative transcriptomic analysis of powdery mildew resistant and susceptible melon inbred lines to identify the genes involved in the response to Podosphaera xanthii infection. Scientia Horticulturae 304:111305

doi: 10.1016/j.scienta.2022.111305
[28]

Hu Y, Gao Y, Yang L, Wang W, Wang Y, et al. 2019. The cytological basis of powdery mildew resistance in wild Chinese Vitis species. Plant Physiology and Biochemistry 144:244−53

doi: 10.1016/j.plaphy.2019.09.049
[29]

Schnathorst WC. 1960. Effect of temperature and moisture stress on the lettuce powdery mildew fungus. Phytopathology 50:304−08

[30]

Schnathorst WC. 1965. Environmental relationships in the powdery mildew. Annual Review of Phytopathology 3:343−66

doi: 10.1146/annurev.py.03.090165.002015
[31]

Sugai K, Inoue H, Inoue C, Sato M, Wakazaki M, et al. 2020. High humidity causes abnormalities in the process of appressorial formation of Blumeria graminis f. sp. hordei. Pathogens 9:45

doi: 10.3390/pathogens9010045
[32]

Sivapalan A. 1993. Effects of water on germination of powdery mildew conidia. Mycological Research 97:71−76

doi: 10.1016/S0953-7562(09)81115-5
[33]

Perera RG, Wheeler BEJ. 1975. Effect of water droplets on the development of Sphaerotheca pannosa on rose leaves. Transactions of the British Mycological Society 64:313−19

doi: 10.1016/S0007-1536(75)80118-5