[1] |
Nie Y, Luo F, Lin Q. 2018. Dietary nutrition and gut microflora: A promising target for treating diseases. Trends in Food Science & Technology 75:72−80 doi: 10.1016/j.jpgs.2018.03.002 |
[2] |
He X, Fang J, Guo Q, Wang M, Li Y, et al. 2020. Advances in antiviral polysaccharides derived from edible and medicinal plants and mushrooms. Carbohydrate Polymers 229:115548 doi: 10.1016/j.carbpol.2019.115548 |
[3] |
Yang D, Liu Y, Zhang L. 2019. Tremella polysaccharide: The molecular mechanisms of its drug action. Progress in Molecular Biology and Translational Science 163:383−421 doi: 10.1016/bs.pmbts.2019.03.002 |
[4] |
Xu J, Zou Y, Guo L, Lin J, Jiang Z, et al. 2023. Rheological and microstructural properties of polysaccharide obtained from the gelatinous Tremella fuciformis fungus. International Journal of Biological Macromolecules 228:153−64 doi: 10.1016/j.ijbiomac.2022.12.214 |
[5] |
Ge X, Huang W, Xu X, Lei P, Sun D, et al. 2020. Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis XY. International Journal of Biological Macromolecules 148:173−81 doi: 10.1016/j.ijbiomac.2020.01.021 |
[6] |
Li X, Su Q, Pan Y. 2023. Overcharged lipid metabolism in mechanisms of antitumor by Tremella fuciformis-derived polysaccharide. International Journal of Oncology 62:11 doi: 10.3892/ijo.2022.5459 |
[7] |
Tu J, Brennan M, Hui X, Wang R, Peressini D, et al. 2022. Utilisation of dried shiitake, black ear and silver ear mushrooms into sorghum biscuits manipulates the predictive glycaemic response in relation to variations in biscuit physical characteristics. International Journal of Food Science & Technology 57:2715−28 doi: 10.1111/ijfs.15500 |
[8] |
Ruan Y, Li H, Pu L, Shen T, Jin Z. 2018. Tremella fuciformis Polysaccharides Attenuate Oxidative Stress and Inflammation in Macrophages through miR-155. Analytical Cellular Pathology 2018:5762371 doi: 10.1155/2018/5762371 |
[9] |
Zhou Y, Chen X, Yi R, Li G, Sun P, et al. 2018. Immunomodulatory Effect of Tremella Polysaccharides against Cyclophosphamide-Induced Immunosuppression in Mice. Molecules 23:239 doi: 10.3390/molecules23020239 |
[10] |
Xu Y, Xie L, Zhang Z, Zhang W, Tang J, et al. 2021. Tremella fuciformis Polysaccharides Inhibited Colonic Inflammation in Dextran Sulfate Sodium-Treated Mice via Foxp3+ T Cells, Gut Microbiota, and Bacterial Metabolites. Frontiers in Immunology 12:648162 doi: 10.3389/fimmu.2021.648162 |
[11] |
Yui T, Ogawa K, Kakuta M, Misaki A. 1995. Chain conformation of a glucurono-xylo-mannan isolated from fruit body of Tremella fuciformis Berk. Journal of Carbohydrate Chemistry 14:255−63 doi: 10.1080/07328309508002068 |
[12] |
Zhang Y, Hu M, Zhu K, Wu G, Tan L. 2018. Functional properties and utilization of Artocarpus heterophyllus Lam seed starch from new species in China. International Journal of Biological Macromolecules 107:1395−405 doi: 10.1016/j.ijbiomac.2017.10.001 |
[13] |
Wang C, Li W, Chen Z, Gao X, Yuan G, et al. 2018. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Research International 103:280−88 doi: 10.1016/j.foodres.2017.10.058 |
[14] |
Zhou W, Yan Y, Mi J, Zhang H, Lu L, et al. 2018. Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from bee collected pollen of Chinese wolfberry. Journal of Agricultural and Food Chemistry 66:898−907 doi: 10.1021/acs.jafc.7b05546 |
[15] |
Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, et al. 2012. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology 30:591−600 doi: 10.1016/j.tibtech.2012.08.001 |
[16] |
Wu DT, An LY, Liu W, Hu YC, Wang SP, et al. 2022. In vitro fecal fermentation properties of polysaccharides from Tremella fuciformis and related modulation effects on gut microbiota. Food Research International 156:111185 doi: 10.1016/j.foodres.2022.111185 |
[17] |
Yang M, Yang Y, He Q, Zhu P, Liu M, et al. 2021. Intestinal Microbiota — A Promising Target for Antiviral Therapy? Frontiers in Immunology 12:676232 doi: 10.3389/fimmu.2021.676232 |
[18] |
Li H, Liu S, Liu Y, Li W, Niu A, et al. 2022. Effects of in vitro digestion and fermentation of Nostoc commune Vauch. polysaccharides on properties and gut microbiota. Carbohydrate Polymers 281:119055 doi: 10.1016/j.carbpol.2021.119055 |
[19] |
Ayimbila F, Siriwong S, Nakphaichit M, Keawsompong S. 2022. In vitro gastrointestinal digestion of Lentinus squarrosulus powder and impact on human fecal microbiota. Scientific Reports 12:2655 doi: 10.1038/s41598-022-06648-z |
[20] |
Wu DT, Deng Y, Zhao J, Li SP. 2017. Molecular characterization of branched polysaccharides from Tremella fuciformis by asymmetrical flow field-flow fractionation and size exclusion chromatography. Journal of Separation Science 40:4272−80 doi: 10.1002/jssc.201700615 |
[21] |
Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14:991−1014 doi: 10.1038/s41596-018-0119-1 |
[22] |
Han X, Zhou Q, Gao Z, Lin X, Zhou K, et al. 2022. In vitro digestion and fecal fermentation behaviors of polysaccharides from Ziziphus Jujuba cv. Pozao and its interaction with human gut microbiota. Food Research International 162:112022 doi: 10.1016/j.foodres.2022.112022 |
[23] |
Wu DT, Fu Y, Guo H, Yuan Q, Nie XR, et al. 2021. In vitro simulated digestion and fecal fermentation of polysaccharides from loquat leaves: Dynamic changes in physicochemical properties and impacts on human gut microbiota. International Journal of Biological Macromolecules 168:733−42 doi: 10.1016/j.ijbiomac.2020.11.130 |
[24] |
Wu DT, Yuan Q, Guo H, Fu Y, Li F, et al. 2021. Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota. Food Research International 141:109888 doi: 10.1016/j.foodres.2020.109888 |
[25] |
Liu D, Tang W, Yin JY, Nie SP, Xie MY. 2021. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocolloids 116:106641 doi: 10.1016/j.foodhyd.2021.106641 |
[26] |
Qiu J, Zhang H, Wang Z. 2019. Ultrasonic degradation of Polysaccharides from Auricularia auricula and the antioxidant activity of their degradation products. LWT 113:108266 doi: 10.1016/j.lwt.2019.108266 |
[27] |
Kazemi M, Khodaiyan F, Hosseini SS. 2019. Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT 105:182−89 doi: 10.1016/j.lwt.2019.01.060 |
[28] |
Wang B, Huang B, Yang B, Ye L, Zeng J, et al. 2023. Structural elucidation of a novel polysaccharide from Ophiopogonis Radix and its self-assembly mechanism in aqueous solution. Food Chemistry 402:134165 doi: 10.1016/j.foodchem.2022.134165 |
[29] |
Nie XR, Li HY, Du G, Lin S, Hu R, et al. 2019. Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China. International Journal of Biological Macromolecules 139:459−67 doi: 10.1016/j.ijbiomac.2019.08.016 |
[30] |
Feng H, Jin H, Gao Y, Yan S, Zhang Y, et al. 2020. Effects of freeze-thaw cycles on the structure and emulsifying properties of peanut protein isolates. Food Chemistry 330:127215 doi: 10.1016/j.foodchem.2020.127215 |
[31] |
Bai Y, Zhou Y, Zhang R, Chen Y, Wang F, et al. 2023. Gut microbial fermentation promotes the intestinal anti-inflammatory activity of Chinese yam polysaccharides. Food Chemistry 402:134003 doi: 10.1016/j.foodchem.2022.134003 |
[32] |
Zhu X, Hao R, Lv X, Zhou X, Li D, et al. 2024. Nuciferine ameliorates high-fat diet-induced disorders of glucose and lipid metabolism in obese mice based on the gut–liver axis. Food Frontiers 5:188−201 doi: 10.1002/fft2.292 |
[33] |
Liu Y, Duan X, Duan S, Li C, Hu B, et al. 2020. Effects of in vitro digestion and fecal fermentation on the stability and metabolic behavior of polysaccharides from Craterellus cornucopioides. Food & Function 11:6899−910 doi: 10.1039/d0fo01430c |
[34] |
Yuan Y, Li C, Zheng Q, Wu J, Zhu K, et al. 2019. Effect of simulated gastrointestinal digestion in vitro on the antioxidant activity, molecular weight and microstructure of polysaccharides from a tropical sea cucumber (Holothuria leucospilota). Food Hydrocolloids 89:735−41 doi: 10.1016/j.foodhyd.2018.11.040 |
[35] |
Chen G, Xie M, Wan P, Chen D, Ye H, et al. 2018. Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea. Food Chemistry 244:331−39 doi: 10.1016/j.foodchem.2017.10.074 |
[36] |
Yan JK, Chen TT, Wang L, Wang ZW, Li C, et al. 2022. In vitro simulated digestion affecting physicochemical characteristics and bioactivities of polysaccharides from barley (Hordeum vulgare L.) grasses at different growth stages. International Journal of Biological Macromolecules 219:876−85 doi: 10.1016/j.ijbiomac.2022.08.043 |
[37] |
Wu DT, Nie XR, Gan RY, Guo H, Fu Y, et al. 2021. In vitro digestion and fecal fermentation behaviors of a pectic polysaccharide from okra (Abelmoschus esculentus) and its impacts on human gut microbiota. Food Hydrocolloids 114:106577 doi: 10.1016/j.foodhyd.2020.106577 |
[38] |
Xu X, Chen A, Ge X, Li S, Zhang T, et al. 2020. Chain conformation and physicochemical properties of polysaccharide (glucuronoxylomannan) from fruit bodies of Tremella fuciformis. Carbohydrate Polymers 245:116354 doi: 10.1016/j.carbpol.2020.116354 |
[39] |
Jiao X, Li F, Zhao J, Wei Y, Zhang L, et al. 2023. Structural diversity and physicochemical properties of polysaccharides isolated from pumpkin (Cucurbita moschata) by different methods. Food Research International 163:112157 doi: 10.1016/j.foodres.2022.112157 |
[40] |
Jiang Y, Xu Y, Li F, Li D, Huang Q. 2020. Pectin extracted from persimmon peel: A physicochemical characterization and emulsifying properties evaluation. Food Hydrocolloids 101:105561 doi: 10.1016/j.foodhyd.2019.105561 |
[41] |
Wang D, Wang D, Yan T, Jiang W, Han X, et al. 2019. Nanostructures assembly and the property of polysaccharide extracted fromTremella Fuciformis fruiting body. International Journal of Biological Macromolecules 137:751−60 doi: 10.1016/j.ijbiomac.2019.06.198 |
[42] |
Qin C, Yang G, Zhu C, Wei M. 2022. Characterization of edible film fabricated with HG-type hawthorn pectin gained using different extraction methods. Carbohydrate Polymers 285:119270 doi: 10.1016/j.carbpol.2022.119270 |
[43] |
Norcino LB, Mendes JF, Natarelli CVL, Manrich A, Oliveira JE, et al. 2020. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocolloids 106:105862 doi: 10.1016/j.foodhyd.2020.105862 |
[44] |
Ai J, Yang Z, Liu J, Schols HA, Battino M, et al. 2022. Structural characterization and in vitro fermentation characteristics of enzymatically extracted black mulberry polysaccharides. Journal of Agricultural and Food Chemistry 70:3654−65 doi: 10.1021/acs.jafc.1c07810 |
[45] |
Liu C, Du P, Cheng Y, Guo Y, Hu B, et al. 2021. Study on fecal fermentation characteristics of aloe polysaccharides in vitro and their predictive modeling. Carbohydrate Polymers 256:117571 doi: 10.1016/j.carbpol.2020.117571 |
[46] |
Li X, Guo R, Wu X, Liu X, Ai L, et al. 2020. Dynamic digestion of tamarind seed polysaccharide: Indigestibility in gastrointestinal simulations and gut microbiota changes in vitro. Carbohydrate Polymers 239:116194 doi: 10.1016/j.carbpol.2020.116194 |
[47] |
Zhang W, Hu B, Liu C, Hua H, Guo Y, et al. 2022. Comprehensive analysis of Sparassis crispa polysaccharide characteristics during the in vitro digestion and fermentation model. Food Research International 154:111005 doi: 10.1016/j.foodres.2022.111005 |
[48] |
Xu J, Wang R, Zhang H, Wu J, Zhu L, Zhan X. 2021. In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides. LWT 147:111544 doi: 10.1016/j.lwt.2021.111544 |
[49] |
Song X, Cui W, Meng F, Xia Q, Li X, et al. 2022. Glucopyranose from Pleurotus geesteranus prevent alcoholic liver diseases by regulating Nrf2/HO-1-TLR4/NF-κ B signalling pathways and gut microbiota. Food & Function 13:2441−55 doi: 10.1039/d1fo03486c |
[50] |
Yu C, Ahmadi S, Shen S, Wu D, Xiao H, et al. 2022. Structure and fermentation characteristics of five polysaccharides sequentially extracted from sugar beet pulp by different methods. Food Hydrocolloids 126:107462 doi: 10.1016/j.foodhyd.2021.107462 |
[51] |
Shen W, Shen M, Zhao X, Zhu H, Yang Y, et al. 2017. Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila. Frontiers in Microbiology 8:272 doi: 10.3389/fmicb.2017.00272 |
[52] |
Zhang X, Aweya JJ, Huang ZX, Kang ZY, Bai ZH, et al. 2020. In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydrate Polymers 234:115894 doi: 10.1016/j.carbpol.2020.115894 |
[53] |
Hao Z, Wang X, Yang H, Tu T, Zhang J, et al. 2021. PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes. International Journal of Molecular Sciences 22:3077 doi: 10.3390/ijms22063077 |
[54] |
Rivera-Piza A, Lee SJ. 2020. Effects of dietary fibers and prebiotics in adiposity regulation via modulation of gut microbiota. Applied Biological Chemistry 63:2 doi: 10.1186/s13765-019-0482-9 |
[55] |
Gómez B, Gullón B, Remoroza C, Schols HA, Parajó JC, et al. 2014. Purification, Characterization, and Prebiotic Properties of Pectic Oligosaccharides from Orange Peel Wastes. Journal of Agricultural and Food Chemistry 62:9769−82 doi: 10.1021/jf503475b |