[1]

Ainsworth GC. 1981. Introduction to the history of plant pathology. Cambridge: Cambridge University Press. xii, 315 pp.

[2]

Karling JS. 1968. The Plasmodiophorales. 2nd edition. New York: Hafner Publishing Company. xiii, 256 pp.

[3]

Dixon GR. 2009. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. Journal of Plant Growth Regulation 28:194−202

doi: 10.1007/s00344-009-9090-y
[4]

Tewari JP, Strelkov SE, Orchard D, Hartman M, Lange RM, et al. 2005. Identification of clubroot of crucifers on canola (Brassica napus) in Alberta. Canadian Journal of Plant Pathology 27:143−44

doi: 10.1080/07060660509507206
[5]

Chai AL, Xie XW, Shi YX, Li BJ. 2014. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Canadian Journal of Plant Pathology 36:142−53

doi: 10.1080/07060661.2013.868829
[6]

Engqvist L. 1994. Distribution of clubroot (Plasmodiophora brassicae Wor) in Sweden and the effect of infection on oil content of oilseed rape (Brassica napus L.). Sveriges Utsädesförenings Tidskrift 104:82−86

[7]

Howard RJ, Strelkov SE, Harding MW. 2010. Clubroot of cruciferous crops – new perspectives on an old disease. Canadian Journal of Plant Pathology 32:43−57

doi: 10.1080/07060661003621761
[8]

Cao T, Manolii VP, Strelkov SE, Hwang SF, Howard RJ. 2009. Virulence and spread of Plasmodiophora brassicae [clubroot] in Alberta, Canada. Canadian Journal of Plant Pathology 31:321−29

doi: 10.1080/07060660909507606
[9]

Neuhauser S, Kirchmair M, Gleason FH. 2011. The ecological potentials of Phytomyxea ("plasmodiophorids") in aquatic food webs. Hydrobiologia 659:23−35

doi: 10.1007/s10750-010-0508-0
[10]

Zhang T, Zhao Z, Zhang C, Pang W, Choi SR, et al. 2014. Fine genetic and physical mapping of the CRb gene conferring resistance to clubroot disease in Brassica rapa. Molecular Breeding 34:1173−83

doi: 10.1007/s11032-014-0108-1
[11]

Dixon GR. 2014. Clubroot (Plasmodiophora brassicae Woronin) – an agricultural and biological challenge worldwide. Canadian Journal of Plant Pathology 36:5−18

doi: 10.1080/07060661.2013.875487
[12]

Feng J, Xiao Q, Hwang SF, Strelkov SE, Gossen BD. 2012. Infection of canola by secondary zoospores of Plasmodiophora brassicae produced on a nonhost. European Journal of Plant Pathology 132:309−15

doi: 10.1007/s10658-011-9875-2
[13]

Ma Y, Choi SR, Wang Y, Chhapekar SS, Zhang X, et al. 2022. Starch content changes and metabolism-related gene regulation of Chinese cabbage synergistically induced by Plasmodiophora brassicae infection. Horticulture Research 9:uhab071

doi: 10.1093/hr/uhab071
[14]

Feng J, Hwang R, Hwang SF, Strelkov SE, Gossen BD, et al. 2010. Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. Molecular Plant Pathology 11:503−12

doi: 10.1111/j.1364-3703.2010.00623.x
[15]

Ren H, Chen C, Wang Q, Zhao D, Guo S. 2016. The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources 11:5435−51

doi: 10.15376/biores.11.2.5435-5451
[16]

Dobson R, Gabrielson RL, Baker AS. 1982. Soil water matric potential requirements for root-hair and cortical infection of Chinese cabbage by Plasmodiophora brassicae. Phytopathology 72:1598−600

doi: 10.1094/Phyto-72-1598
[17]

Struck C, Rüsch S, Strehlow B. 2022. Control strategies of clubroot disease caused by Plasmodiophora brassicae. Microorganisms 10:620

doi: 10.3390/microorganisms10030620
[18]

Gossen BD, Deora A, Peng G, Hwang SF, McDonald MR. 2014. Effect of environmental parameters on clubroot development and the risk of pathogen spread. Canadian Journal of Plant Pathology 36:37−48

doi: 10.1080/07060661.2013.859635
[19]

Olszak M, Truman W, Stefanowicz K, Sliwinska E, Ito M, et al. 2019. Transcriptional profiling identifies critical steps of cell cycle reprogramming necessary for Plasmodiophora brassicae-driven gall formation in Arabidopsis. The Plant Journal 97:715−29

doi: 10.1111/tpj.14156
[20]

Malinowski R, Truman W, Blicharz S. 2019. Genius architect or clever thief—how Plasmodiophora brassicae reprograms host development to establish a pathogen-oriented physiological sink. Molecular Plant-Microbe Interactions 32:1259−66

doi: 10.1094/MPMI-03-19-0069-CR
[21]

Malinowski R, Smith JA, Fleming AJ, Scholes JD, Rolfe SA. 2012. Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. The Plant Journal 71:226−38

doi: 10.1111/j.1365-313X.2012.04983.x
[22]

Walerowski P, Gündel A, Yahaya N, Truman W, Sobczak M, et al. 2018. Clubroot disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls. The Plant Cell 30:3058−73

doi: 10.1105/tpc.18.00283
[23]

Crute IR, Gray AR, Crisp P, Buczacki ST. 1980. Variation in Plasmodiophora brassicae and resistance to clubroot disease in brassicas and allied crops-a critical review. Plant Breeding Abstracts 50:91−104

[24]

Williams PH. 1966. A system for the determination of races of Plasmodiophora brassicae that infect cabbage and Rutabaga. Phytopathology 56:624−26

[25]

Honig F. 1931. The pathogene of club root (Plasmodiophora brassicae Wor.). A monograph . Gartenbauwissenschaft 5:116−225

[26]

Yoshikawa H, Buczacki S. 1978. Club root Plasmodiophora brassicae in Japan: research and problems. Review of Plant Pathology (UK) 57:7

[27]

Buczacki ST. 1977. Root infections from single resting spores of Plasmodiophora brassicae. Transactions of the British Mycological Society 69:328−29

doi: 10.1016/S0007-1536(77)80059-4
[28]

Kim H, Jo EJ, Choi YH, Jang KS, Choi GJ. 2016. Pathotype classification of Plasmodiophora brassicae isolates using clubroot-resistant cultivars of Chinese cabbage. The Plant Pathology Journal 32:423−30

doi: 10.5423/PPJ.OA.04.2016.0081
[29]

Ji H, Ren L, Chen K, Xu L, Liu F, et al. 2013. Identification of physiological races of club root and resistance of rape cultivars to Plasmodiophora brassicae. Chinese Journal of Oil Crop Sciences 35:301−06

[30]

Somé A, Manzanares MJ, Laurens F, Baron F, Thomas G, Rouxel F. 1996. Variation for virulence on Brassica napus L. amongst Plasmodiophora brassicae collections from France and derived single-spore isolates. Plant Pathology 45:432−39

doi: 10.1046/j.1365-3059.1996.d01-155.x
[31]

Kuginuki Y, Yoshikawa H, Hirai M. 1999. Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). European Journal of Plant Pathology 105:327−32

doi: 10.1023/A:1008705413127
[32]

Strelkov SE, Hwang SF, Manolii VP, Cao T, Fredua-Agyeman R, et al. 2018. Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada. Canadian Journal of Plant Pathology 40:284−98

doi: 10.1080/07060661.2018.1459851
[33]

Pang W, Liang Y, Zhan Z, Li X, Piao Z. 2020. Development of a sinitic clubroot differential set for the pathotype classification of Plasmodiophora brassicae. Frontiers in Plant Science 11:568771

doi: 10.3389/fpls.2020.568771
[34]

Ding Y, Jian Y, Yu Y, Wang W, Geng L, et al. 2013. Identification of pathotype of Plasmodiophora brassicae on crucifer vegetables in eight provinces of China. China Vegetables 16:85−88

doi: 10.3969/j.issn.1000-6346.2013.16.014
[35]

Cho WD, Kim WG, Takahashi K. 2003. Occurrence of clubroot in cruciferous vegetable crops and races of the pathogen in Korea. The Plant Pathology Journal 19:64−68

doi: 10.5423/PPJ.2003.19.1.064
[36]

Zamani-Noor N, Rodemann B. 2018. Reducing the build-up of Plasmodiophora brassicae inoculum by early management of oilseed rape volunteers. Plant Pathology 67:426−32

doi: 10.1111/ppa.12732
[37]

Liu X, Strelkov SE, Sun R, Hwang SF, Fredua-Agyeman R, et al. 2021. Histopathology of the Plasmodiophora brassicae-Chinese cabbage interaction in hosts carrying different sources of resistance. Frontiers in Plant Science:783550

doi: 10.3389/fpls.2021.783550
[38]

Möller M, Harling R. 1996. Randomly amplified polymorphic DNA (RAPD) profiling ofPlasmodiophora brassicae. Letters in Applied Microbiology 22:70−75

doi: 10.1111/j.1472-765X.1996.tb01111.x
[39]

Zheng J, Wang X, Xiao Y, Wei S, Wang D, et al. 2019. Specific genes identified in pathotype 4 of the clubroot pathogen Plasmodiophora brassicae. Plant Disease 103:495−503

doi: 10.1094/PDIS-05-18-0912-RE
[40]

Kroll TK, Lacy GH, Moore LD. 1983. A quantitative description of the colonization of susceptible and resistant radish plants by Plasmodiophora brassicae. Journal of Phytopathology 108:97−105

doi: 10.1111/j.1439-0434.1983.tb00568.x
[41]

McDonald MR, Sharma K, Gossen BD, Deora A, Feng J, et al. 2014. The role of primary and secondary infection in host response to Plasmodiophora brassicae. Phytopathology 104:1078−87

doi: 10.1094/PHYTO-07-13-0189-R
[42]

Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, et al. 2006. A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Molecular Plant-Microbe Interactions 19:1431−43

doi: 10.1094/MPMI-19-1431
[43]

Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323−29

doi: 10.1038/nature05286
[44]

Tanaka S, Mido H, Ito SI. 2006. Colonization by two isolates of Plasmodiophora brassicae with differing pathogenicity on a clubroot-resistant cultivar of Chinese cabbage (Brassica rapa L. subsp. pekinensis). Journal of General Plant Pathology 72:205−09

doi: 10.1007/s10327-006-0276-x
[45]

Donald EC, Jaudzems G, Porter IJ. 2008. Pathology of cortical invasion by Plasmodiophora brassicae in clubroot resistant and susceptible Brassica oleracea hosts. Plant Pathology 57:201−09

doi: 10.1111/j.1365-3059.2007.01765.x
[46]

Schuller A, Kehr J, Ludwig-Müller J. 2014. Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant and Cell Physiology 55:392−411

doi: 10.1093/pcp/pct174
[47]

Mei J, Guo Z, Wang J, Feng Y, Ma G, et al. 2019. Understanding the resistance mechanism in Brassica napus to clubroot caused by Plasmodiophora brassicae. Phytopathology 109:810−18

doi: 10.1094/PHYTO-06-18-0213-R
[48]

Piao Y, Li S, Chen Y, Zhao S, Piao Z, et al. 2024. A Ca2+ sensor BraCBL1.2 involves in BraCRa-mediated clubroot resistance in Chinese cabbage. Horticulture Research 11:uhad261

doi: 10.1093/hr/uhad261
[49]

Jubault M, Hamon C, Gravot A, Lariagon C, Delourme R, et al. 2008. Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. Plant Physiology 146:2008−19

doi: 10.1104/pp.108.117432
[50]

Xu L, Yang H, Ren L, Chen W, Liu L, et al. 2018. Jasmonic acid-mediated aliphatic glucosinolate metabolism is involved in clubroot disease development in Brassica napus L. Frontiers in Plant Science 9:750

doi: 10.3389/fpls.2018.00750
[51]

Fu P, Piao Y, Zhan Z, Zhao Y, Pang W, et al. 2019. Transcriptome arofile of Brassica rapa L. reveals the involvement of jasmonic acid, ethylene, and brassinosteroid signaling pathways in clubroot resistance. Agronomy 9:589

doi: 10.3390/agronomy9100589
[52]

Chen W, Li Y, Yan R, Xu L, Ren L, et al. 2019. Identification and characterization of Plasmodiophora brassicae primary infection effector candidates that suppress or induce cell death in host and nonhost plants. Phytopathology 109:1689−97

doi: 10.1094/PHYTO-02-19-0039-R
[53]

Keen NT, Williams PH. 1969. Translocation of sugars into infected cabbage tissues during clubroot development. Plant Physiology 44:748−54

doi: 10.1104/pp.44.5.748
[54]

Evans JL, Scholes JD. 1995. How does clubroot alter the regulation of carbon metabolism in its host? Aspects of Applied Biology 125−32

[55]

Siemens J, González MC, Wolf S, Hofmann C, Greiner S, et al. 2011. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana. Molecular Plant Pathology 12:247−62

doi: 10.1111/j.1364-3703.2010.00667.x
[56]

Jubault M, Lariagon C, Taconnat L, Renou JP, Gravot A, et al. 2013. Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Functional & Integrative Genomics 13:191−205

doi: 10.1007/s10142-013-0312-9
[57]

Irani S, Trost B, Waldner M, Nayidu N, Tu J, et al. 2018. Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genomics 19:23

doi: 10.1186/s12864-017-4426-7
[58]

Wagner G, Laperche A, Lariagon C, Marnet N, Renault D, et al. 2019. Resolution of quantitative resistance to clubroot into QTL-specific metabolic modules. Journal of Experimental Botany 70:5375−90

doi: 10.1093/jxb/erz265
[59]

Brodmann D, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, et al. 2002. Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Molecular Plant-Microbe Interactions 15:693−700

doi: 10.1094/MPMI.2002.15.7.693
[60]

Gravot A, Grillet L, Wagner G, Jubault M, Lariagon C, et al. 2011. Genetic and physiological analysis of the relationship between partial resistance to clubroot and tolerance to trehalose in Arabidopsis thaliana. New Phytologist 191:1083−94

doi: 10.1111/j.1469-8137.2011.03751.x
[61]

Wagner G, Charton S, Lariagon C, Laperche A, Lugan R, et al. 2012. Metabotyping: a new approach to investigate rapeseed (Brassica napus L.) genetic diversity in the metabolic response to clubroot infection. Molecular Plant-Microbe Interactions 25:1478−91

doi: 10.1094/MPMI-02-12-0032-R
[62]

Fernandez J, Wilson RA. 2011. The sugar sensor, trehalose-6-phosphate synthase (Tps1), regulates primary and secondary metabolism during infection by the rice blast fungus: Will Magnaporthe oryzae's "sweet tooth" become its "Achilles' heel"? Mycology 2:46−53

doi: 10.1080/21501203.2011.563431
[63]

Grsic S, Kirchheim B, Pieper K, Fritsch M, Hilgenberg W, et al. 1999. Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiologia Plantarum 105:521−31

doi: 10.1034/j.1399-3054.1999.105318.x
[64]

Wittstock U, Halkier BA. 2002. Glucosinolate research in the Arabidopsis era. Trends in Plant Science 7:263−70

doi: 10.1016/S1360-1385(02)02273-2
[65]

Ludwig-Müller J, Pieper K, Ruppel M, Cohen JD, Epstein E, et al. 1999. Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta 208:409−19

doi: 10.1007/s004250050576
[66]

Liu T, Zhang X, Yang H, Agerbirk N, Qiu Y, et al. 2016. Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation. Frontiers in Plant Science 7:83

doi: 10.3389/fpls.2016.00083
[67]

Ludwig-Müller J, Prinsen E, Rolfe SA, Scholes JD. 2009. Metabolism and plant hormone action during clubroot disease. Journal of Plant Growth Regulation 28:229−44

doi: 10.1007/s00344-009-9089-4
[68]

Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95−101

doi: 10.1126/science.1164627
[69]

Klein AP, Sattely ES. 2017. Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proceedings of the National Academy of Sciences of the United States of America 114:1910−15

doi: 10.1073/pnas.1615625114
[70]

Grsic-Rausch S, Kobelt P, Siemens JM, Bischoff M, Ludwig-Müller J. 2000. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis. Plant Physiology 122:369−78

doi: 10.1104/pp.122.2.369
[71]

Malinowski R, Novák O, Borhan MH, Spíchal L, Strnad M, et al. 2016. The role of cytokinins in clubroot disease. European Journal of Plant Pathology 145:543−57

doi: 10.1007/s10658-015-0845-y
[72]

Bíbová J, Kábrtová V, Večeřová V, Kučerová Z, Hudeček M, et al. 2023. The role of a cytokinin antagonist in the progression of clubroot disease. Biomolecules 13:299

doi: 10.3390/biom13020299
[73]

Jahn L, Mucha S, Bergmann S, Horn C, Staswick P, et al. 2013. The clubroot pathogen (Plasmodiophora brassicae) influences auxin signaling to regulate auxin homeostasis in Arabidopsis. Plants 2:726−49

doi: 10.3390/plants2040726
[74]

Schwelm A, Fogelqvist J, Knaust A, Jülke S, Lilja T, et al. 2015. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Scientific Reports 5:11153

doi: 10.1038/srep11153
[75]

Woodward AW, Bartel B. 2005. Auxin: regulation, action, and interaction. Annals of Botany 95:707−35

doi: 10.1093/aob/mci083
[76]

Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, et al. 2015. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant and Cell Physiology 56:2158−68

doi: 10.1093/pcp/pcv127
[77]

Shah N, Li Q, Xu Q, Liu J, Huang F, et al. 2020. CRb and PbBa8.1 synergically increases resistant genes expression upon infection of Plasmodiophora brassicae in Brassica napus. Genes 11:202

doi: 10.3390/genes11020202
[78]

Ludwig-Müller J, Jülke S, Geiß K, Richter F, Mithöfer A, et al. 2015. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Molecular Plant Pathology 16:349−64

doi: 10.1111/mpp.12185
[79]

Bulman S, Richter F, Marschollek S, Benade F, Jülke S, et al. 2019. Arabidopsis thaliana expressing PbBSMT, a gene encoding a SABATH-type methyltransferase from the plant pathogenic protist Plasmodiophora brassicae, show leaf chlorosis and altered host susceptibility. Plant Biology 21:120−30

doi: 10.1111/plb.12728
[80]

Djavaheri M, Ma L, Klessig DF, Mithöfer A, Gropp G, et al. 2019. Mimicking the host regulation of salicylic acid: a virulence strategy by the clubroot pathogen Plasmodiophora brassicae. Molecular Plant-Microbe Interactions 32:296−305

doi: 10.1094/MPMI-07-18-0192-R
[81]

Ludwig-Müller J, Schubert B, Pieper K, Ihmig S, Hilgenberg W. 1997. Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochemistry 44:407−14

doi: 10.1016/S0031-9422(96)00498-0
[82]

Wolf S, Mravec J, Greiner S, Mouille G, Höfte H. 2012. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Current Biology 22:1732−37

doi: 10.1016/j.cub.2012.07.036
[83]

Li H, Guo H. 2007. Molecular basis of the ethylene signaling and response pathway in Arabidopsis. Journal of Plant Growth Regulation 26:106−17

doi: 10.1007/s00344-007-0015-3
[84]

Devos S, Vissenberg K, Verbelen JP, Prinsen E. 2005. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. New Phytologist 166:241−50

doi: 10.1111/j.1469-8137.2004.01304.x
[85]

Moon JY, Kim ST, Choi GJ, Kwon SY, Cho HS, et al. 2020. Comparative proteomic analysis of host responses to Plasmodiophora brassicae infection in susceptible and resistant Brassica oleracea. Plant Biotechnology Reports 14:263−74

doi: 10.1007/s11816-020-00596-8
[86]

Agarwal M, Shrivastava N, Padh H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27:617−31

doi: 10.1007/s00299-008-0507-z
[87]

Liu B, Wang Y, Zhai W, Deng J, Wang H, et al. 2013. Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theoretical and Applied Genetics 126:231−39

doi: 10.1007/s00122-012-1976-6
[88]

Ce F, Mei J, He H, Zhao Y, Hu W, et al. 2021. Identification of candidate genes for clubroot-resistance in Brassica oleracea using quantitative trait loci-sequencing. Frontiers in Plant Science 12:703520

doi: 10.3389/fpls.2021.703520
[89]

Zhang H, Ma X, Liu X, Zhang S, Li F, et al. 2022. Identification and fine-mapping of clubroot (Plasmodiophora brassicae) resistant QTL in Brassica rapa. Horticulturae 8:66

doi: 10.3390/horticulturae8010066
[90]

Choi SR, Oh SH, Chhapekar SS, Dhandapani V, Lee CY, et al. 2020. Quantitative trait locus mapping of clubroot resistance and Plasmodiophora brassicae pathotype banglim-specific marker development in Brassica rapa. International Journal of Molecular Sciences 21:4157

doi: 10.3390/ijms21114157
[91]

Karim MM, Dakouri A, Zhang Y, Chen Q, Peng G, et al. 2020. Two clubroot-resistance genes, Rcr3 and Rcr9wa, mapped in Brassica rapa using bulk segregant RNA sequencing. International Journal of Molecular Sciences 21:5033

doi: 10.3390/ijms21145033
[92]

Matsumoto E, Ueno H, Aruga D, Sakamoto K, Hayashida N. 2012. Accumulation of three clubroot resistance genes through marker-assisted selection in Chinese cabbage (Brassica rapa ssp. pekinensis). Journal of the Japanese Society for Horticultural Science 81:184−90

doi: 10.2503/jjshs1.81.184
[93]

Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, et al. 2012. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Molecular Biology 80:621−29

doi: 10.1007/s11103-012-9971-5
[94]

Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, et al. 2013. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 8:e54745

doi: 10.1371/journal.pone.0054745
[95]

Hatakeyama K, Niwa T, Kato T, Ohara T, Kakizaki T, et al. 2017. The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L. Molecular Genetics and Genomics 292:397−405

doi: 10.1007/s00438-016-1281-1
[96]

Yang Z, Jiang Y, Gong J, Li Q, Dun B, et al. 2022. R gene triplication confers European fodder turnip with improved clubroot resistance. Plant Biotechnology Journal 20:1502−17

doi: 10.1111/pbi.13827
[97]

Medzhitov R. 2001. Toll-like receptors and innate immunity. Nature Reviews Immunology 1:135−45

doi: 10.1038/35100529
[98]

Ellis J, Jones D. 1998. Structure and function of proteins controlling strain-specific pathogen resistance in plants. Current Opinion in Plant Biology 1:288−93

doi: 10.1016/1369-5266(88)80048-7
[99]

Wang W, Qin L, Zhang W, Tang L, Zhang C, et al. 2023. WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 186:2656−2671.e18

doi: 10.1016/j.cell.2023.05.023
[100]

Matsumoto E, Yasui C, Ohi M, Tsukada M. 1998. Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79−86

doi: 10.1023/A:1018370418201
[101]

Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, et al. 2003. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theoretical and Applied Genetics 107:997−1002

doi: 10.1007/s00122-003-1309-x
[102]

Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, et al. 2006. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theoretical and Applied Genetics 114:81−91

doi: 10.1007/s00122-006-0412-1
[103]

Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, et al. 2006. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309−19

doi: 10.1534/genetics.104.038968
[104]

Piao ZY, Deng YQ, Choi SR, Park YJ, Lim YP. 2004. SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theoretical and Applied Genetics 108:1458−65

doi: 10.1007/s00122-003-1577-5
[105]

Chen L, Zhang X, Xu H, Song B, Fan X. 2016. Introgression of clubroot resistance into an elite pak choi inbred line through marker-assisted introgression breeding. Plant Breeding 135:471−75

doi: 10.1111/pbr.12379
[106]

Xie Q, Wei X, Liu Y, Han F, Li Z. 2022. Germplasm enhancement and identification of loci conferring resistance against Plasmodiophora brassicae in broccoli. Genes 13:1600

doi: 10.3390/genes13091600
[107]

Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E. 2008. Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theoretical and Applied Genetics 117:759−67

doi: 10.1007/s00122-008-0817-0
[108]

Chen J, Jing J, Zhan Z, Zhang T, Zhang C, et al. 2013. Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa. PLoS One 8:e85307

doi: 10.1371/journal.pone.0085307
[109]

Chu M, Song T, Falk KC, Zhang X, Liu X, et al. 2014. Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genomics 15:1166

doi: 10.1186/1471-2164-15-1166
[110]

Pang W, Liang S, Li X, Li P, Yu S, et al. 2014. Genetic detection of clubroot resistance loci in a new population of Brassica rapa. Horticulture, Environment, and Biotechnology 55:540−47

doi: 10.1007/s13580-014-0079-5
[111]

Yu F, Zhang X, Peng G, Falk KC, Strelkov SE, Gossen BD. 2017. Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa. Scientific Reports 7:4516

doi: 10.1038/s41598-017-04903-2
[112]

Huang Z, Peng G, Liu X, Deora A, Falk KC, et al. 2017. Fine mapping of a clubroot resistance gene in Chinese cabbage using SNP markers identified from bulked segregant RNA sequencing. Frontiers in Plant Science 8:1448

doi: 10.3389/fpls.2017.01448
[113]

Pang W, Fu P, Li X, Zhan Z, Yu S, et al. 2018. Identification and mapping of the clubroot resistance gene CRd in Chinese cabbage (Brassica rapa ssp. pekinensis). Frontiers in Plant Science 9:653

doi: 10.3389/fpls.2018.00653
[114]

Nguyen ML, Monakhos GF, Komakhin RA, Monakhos SG. 2018. The new clubroot resistance locus is located on chromosome A05 in Chinese cabbage (Brassica rapa L.). Russian Journal of Genetics 54:296−304

doi: 10.1134/S1022795418030080
[115]

Laila R, Park JI, Robin AHK, Natarajan S, Vijayakumar H, et al. 2019. Mapping of a novel clubroot resistance QTL using ddRAD-seq in Chinese cabbage (Brassica rapa L.). BMC Plant Biology 19:13

doi: 10.1186/s12870-018-1615-8
[116]

Fredua-Agyeman R, Jiang J, Hwang SF, Strelkov SE. 2020. QTL mapping and inheritance of clubroot resistance genes derived from Brassica rapa subsp. rapifera (ECD 02) reveals resistance loci and distorted segregation ratios in two F2 populations of different crosses. Frontiers in Plant Science 11:899

doi: 10.3389/fpls.2020.00899
[117]

Wei X, Li J, Zhang X, Zhao Y, Nath UK, et al. 2022. Fine mapping and functional analysis of major QTL, CRq for clubroot resistance in Chinese cabbage (Brassica rapa ssp. pekinensis). Agronomy 12:1172

doi: 10.3390/agronomy12051172
[118]

Wang Y, Xiang X, Huang F, Yu W, Zhou X, et al. 2022. Fine mapping of clubroot resistance loci CRA8.1 and candidate gene analysis in Chinese cabbage (Brassica rapa L.). Frontiers in Plant Science 13:898108

doi: 10.3389/fpls.2022.898108
[119]

Pang W, Zhang X, Ma Y, Wang Y, Zhan Z, et al. 2022. Fine mapping and candidate gene analysis of CRA3.7 conferring clubroot resistance in Brassica rapa. Theoretical and Applied Genetics 135:4541−48

doi: 10.1007/s00122-022-04237-2
[120]

Landry BS, Hubert N, Crete R, Chang MS, Lincoln SE, et al. 1992. A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome 35:409−20

doi: 10.1139/g92-061
[121]

Voorrips RE, Jongerius MC, Kanne HJ. 1997. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theoretical and Applied Genetics 94:75−82

doi: 10.1007/s001220050384
[122]

Rocherieux J, Glory P, Giboulot A, Boury S, Barbeyron G, et al. 2004. Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theoretical and Applied Genetics 108:1555−63

doi: 10.1007/s00122-003-1580-x
[123]

Nomura K, Minegishi Y, Kimizuka-Takagi C, Fujioka T, Moriguchi K, et al. 2005. Evaluation of F2 and F3 plants introgressed with QTLs for clubroot resistance in cabbage developed by using SCAR markers. Plant Breeding 124:371−75

doi: 10.1111/j.1439-0523.2005.01105.x
[124]

Nagaoka T, Doullah MAU, Matsumoto S, Kawasaki S, Ishikawa T, et al. 2010. Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theoretical and Applied Genetics 120:1335−46

doi: 10.1007/s00122-010-1259-z
[125]

Lee J, Izzah NK, Choi BS, Joh HJ, Lee SC, et al. 2016. Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA Research 23:29−41

doi: 10.1093/dnares/dsv034
[126]

Karim MM, Yu F. 2023. Identification of QTLs for resistance to 10 pathotypes of Plasmodiophora brassicae in Brassica oleracea cultivar ECD11 through genotyping-by-sequencing. Theoretical and Applied Genetics 136:249

doi: 10.1007/s00122-023-04483-y
[127]

Manzanares-Dauleux MJ, Delourme R, Baron F, Thomas G. 2000. Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theoretical and Applied Genetics 101:885−91

doi: 10.1007/s001220051557
[128]

Botero-Ramírez A, Laperche A, Guichard S, Jubault M, Gravot A, et al. 2020. Clubroot symptoms and resting spore production in a doubled haploid population of oilseed rape (Brassica napus) are controlled by four main QTLs. Frontiers in Plant Science 11:604527

doi: 10.3389/fpls.2020.604527
[129]

Hasan J, Shaikh R, Megha S, Herrmann DT, Kebede B, et al. 2021. Mapping of flowering time, seed quality and clubroot resistance in rutabaga × spring canola populations and their association. Euphytica 217:160

doi: 10.1007/s10681-021-02889-7
[130]

Yu F, Zhang Y, Wang J, Chen Q, Karim MM, et al. 2021. Identification of two major QTLs in Brassica napus lines with introgressed clubroot resistance from turnip cultivar ECD01. Frontiers in Plant Science 12:785989

doi: 10.3389/fpls.2021.785989
[131]

Jiang X, Su Y, Wang M. 2022. Mapping of a novel clubroot disease resistance locus in Brassica napus and related functional identification. Frontiers in Plant Science 13:1014376

doi: 10.3389/fpls.2022.1014376
[132]

Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, et al. 2010. QTL mapping of clubroot resistance in radish (Raphanus sativus L.). Theoretical and Applied Genetics 120:1021−27

doi: 10.1007/s00122-009-1230-z
[133]

Gan C, Deng X, Cui L, Yu X, Yuan W, et al. 2019. Construction of a high-density genetic linkage map and identification of quantitative trait loci associated with clubroot resistance in radish (Raphanus sativus L.). Molecular Breeding 39:116

doi: 10.1007/s11032-019-1020-5
[134]

Gan C, Yan C, Pang W, Cui L, Fu P, et al. 2022. Identification of novel locus RsCr6 related to clubroot resistance in radish (Raphanus sativus L.). Frontiers in Plant Science 13:866211

doi: 10.3389/fpls.2022.866211
[135]

Chang A, Lamara M, Wei Y, Hu H, Parkin IAP, et al. 2019. Clubroot resistance gene Rcr6 in Brassica nigra resides in a genomic region homologous to chromosome A08 in B. rapa. BMC Plant Biology 19:224

doi: 10.1186/s12870-019-1844-5
[136]

Gravot A, Liégard B, Quadrana L, Veillet F, Aigu Y, et al. 2024. Two adjacent NLR genes conferring quantitative resistance to clubroot disease in Arabidopsis are regulated by a stably inherited epiallelic variation. Plant Communications 5:100824

doi: 10.1016/j.xplc.2024.100824
[137]

Diederichsen E, Frauen M, Linders EGA, Hatakeyama K, Hirai M. 2009. Status and perspectives of clubroot resistance breeding in crucifer crops. Journal of Plant Growth Regulation 28:265−81

doi: 10.1007/s00344-009-9100-0
[138]

Hatakeyama K, Yuzawa S, Tonosaki K, Takahata Y, Matsumoto S. 2022. Allelic variation of a clubroot resistance gene (Crr1a) in Japanese cultivars of Chinese cabbage (Brassica rapa L. ). Breeding Science 72: 115−23

doi: 10.1270/jsbbs.21040
[139]

Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, et al. 2014. Draft sequences of the radish (Raphanus sativus L.) genome. DNA Research 21:481−90

doi: 10.1093/dnares/dsu014
[140]

Prerostova S, Dobrev PI, Konradyova V, Knirsch V, Gaudinova A, et al. 2018. Hormonal responses to Plasmodiophora brassicae infection in Brassica napus cultivars differing in their pathogen resistance. International Journal of Molecular Sciences 19:4024

doi: 10.3390/ijms19124024
[141]

Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ. 2012. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One 7:e40695

doi: 10.1371/journal.pone.0040695
[142]

Hejna O, Havlickova L, He Z, Bancroft I, Curn V. 2019. Analysing the genetic architecture of clubroot resistance variation in Brassica napus by associative transcriptomics. Molecular Breeding 39:112

doi: 10.1007/s11032-019-1021-4
[143]

Lan M, Li G, Hu J, Yang H, Zhang L, et al. 2019. iTRAQ-based quantitative analysis reveals proteomic changes in Chinese cabbage (Brassica rapa L.) in response to Plasmodiophora brassicae infection. Scientific Reports 9:12058

doi: 10.1038/s41598-019-48608-0
[144]

Ernst TW, Kher S, Stanton D, Rennie DC, Hwang SF, et al. 2019. Plasmodiophora brassicae resting spore dynamics in clubroot resistant canola (Brassica napus) cropping systems. Plant Pathology 68:399−408

doi: 10.1111/ppa.12949
[145]

Auer S, Ludwig-Müller J. 2015. Biological control of clubroot (Plasmodiophora brassicae) by the endophytic fungus Acremonium alternatum. Journal of Endocytobiosis and Cell Research 26:43−49

[146]

Andersen CB, Jørgensen HJL, Manzotti A, Jensen B. 2018. Seed coating with the fungal biocontrol agent Clonostachys rosea controls clubroot in oilseed rape. IOBC-WPRS Bulletin 136:157−63

[147]

Chen J, Piao Y, Liu Y, Li X, Piao Z. 2018. Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance. Plant Science 270:257−67

doi: 10.1016/j.plantsci.2018.02.017
[148]

Ludwig-Müller J, Thermann P, Pieper K, Hilgenberg W. 1994. Peroxidase and chitinase isoenzyme activities during root infection of Chinese cabbage with Plasmodiophora brassicae. Physiologia Plantarum 90:661−70

doi: 10.1111/j.1399-3054.1994.tb02521.x
[149]

Murakami H, Tsushima S, Akimoto T, Murakami K, Goto I, et al. 2000. Effects of growing leafy daikon (Raphanus sativus) on populations of Plasmodiophora brassicae (clubroot). Plant Pathology 49:584−89

doi: 10.1046/j.1365-3059.2000.00495.x
[150]

Hennig BC, Hwang SF, Manolii VP, Turnbull G, Robinson SVJ, et al. 2022. Evaluation of host resistance, hydrated lime, and weed control to manage clubroot in Canola. Horticulturae 8:215

doi: 10.3390/horticulturae8030215
[151]

Jakir Hasan M, Strelkov SE, Howard RJ, Rahman H. 2012. Screening of Brassica germplasm for resistance to Plasmodiophora brassicae pathotypes prevalent in Canada for broadening diversity in clubroot resistance. Canadian Journal of Plant Science 92:501−15

doi: 10.4141/cjps2010-006
[152]

Liu Y, Xu A, Liang F, Yao X, Wang Y, et al. 2018. Screening of clubroot-resistant varieties and transfer of clubroot resistance genes to Brassica napus using distant hybridization. Breeding Science 68:258−67

doi: 10.1270/jsbbs.17125
[153]

Chen J, Pang W, Chen B, Zhang C, Piao Z. 2015. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and -susceptible alleles in response to Plasmodiophora brassicae during early infection. Frontiers in Plant Science 6:1183

doi: 10.3389/fpls.2015.01183
[154]

Diederichsen E, Beckmann J, Schondelmeier J, Dreyer F. 2006. Genetics of clubroot resistance in Brassica napus 'Mendel'. Acta Horticulturae 706:307−12

[155]

Fredua-Agyeman R, Hwang SF, Strelkov SE, Zhou Q, Feindel D. 2018. Potential loss of clubroot resistance genes from donor parent Brassica rapa subsp. rapifera (ECD 04) during doubled haploid production. Plant Pathology 67:892−901

doi: 10.1111/ppa.12816
[156]

Bradshaw JE, Gemmell DJ, Wilson RN. 1997. Transfer of resistance to clubroot (Plasmodiophora brassicae) to swedes (Brassica napus L. var. napobrassica peterm) from B. rapa. Annals of Applied Biology 130:337−48

doi: 10.1111/j.1744-7348.1997.tb06837.x
[157]

Wang X, Zeng L, Xu L, Chen W, Liu F, et al. 2019. Clubroot resistance introgression in interspecific hybrids between Raphanus sativus and Brassica napus. Oil Crop Science 4:139−51

[158]

Ren W, Li Z, Han F, Zhang B, Li X, et al. 2020. Utilization of Ogura CMS germplasm with the clubroot resistance gene by fertility restoration and cytoplasm replacement in Brassica oleracea L. Horticulture Research 7:61

doi: 10.1038/s41438-020-0282-8
[159]

Zhu M, Yang L, Zhang Y, Zhuang M, Ji J, et al. 2022. Introgression of clubroot resistant gene into Brassica oleracea L. from Brassica rapa based on homoeologous exchange. Horticulture Research 9:uhac195

doi: 10.1093/hr/uhac195
[160]

Hu H, Zhang Y, Yu F. 2024. A CRISPR/Cas9-based vector system enables the fast breeding of selection-marker-free canola with Rcr1-rendered clubroot resistance. Journal of Experimental Botany 75:erad471

doi: 10.1093/jxb/erad471