[1]

Vyas M. 2017. Nutritional profile of spinach and its antioxidant & antidiabetic evaluation. International Journal of Green Pharmacy 11:1125

doi: 10.22377/ijgp.v11i03.1125
[2]

USDA. 2023. United States Department of Agriculture National Agricultural Statistics Service. Crop Production 2022 Summary. https://downloads.usda.library.cornell.edu/usda-esmis/files/k3569432s/9306v916d/wm119139b/cropan23.pdf

[3]

Maneejantra N, Tsukagoshi S, Lu N, Supaibulwatana K, Takagaki M, et al. 2016. A quantitative analysis of nutrient requirements for hydroponic spinach (Spinacia oleracea L.) production under artificial light in a plant factory. Journal of Fertilizers & Pesticides 7:1000170

doi: 10.4172/2471-2728.1000170
[4]

Gao W, He D, Ji F, Zhang S, Zheng J. 2020. Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy 10:1082

doi: 10.3390/agronomy10081082
[5]

Mei C, Flinn BS. 2010. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology 4:81−95

doi: 10.2174/187220810790069523
[6]

Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

[7]

del Orozco-Mosqueda MD, Santoyo G, Glick BR. 2023. Recent advances in the bacterial phytohormone modulation of plant growth. Plants 12:606

doi: 10.3390/plants12030606
[8]

Mei C, Chretien RL, Amaradasa BS, He Y, Turner A, et al. 2021. Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse. Microorganisms 9:1935

doi: 10.3390/microorganisms9091935
[9]

Hossain MA, Hossain MS, Akter M. 2023. Challenges faced by plant growth-promoting bacteria in field-level applications and suggestions to overcome the barriers. Physiological and Molecular Plant Pathology 126:102029

doi: 10.1016/j.pmpp.2023.102029
[10]

Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC. 2017. Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science 8:49

doi: 10.3389/fpls.2017.00049
[11]

Massa F, Defez R, Bianco C. 2022. Exploitation of plant growth promoting bacteria for sustainable agriculture: hierarchical approach to link laboratory and field experiments. Microorganisms 10:865

doi: 10.3390/microorganisms10050865
[12]

Stegelmeier AA, Rose DM, Joris BR, Glick BR. 2022. The use of PGPB to promote plant hydroponic growth. Plants 11:2783

doi: 10.3390/plants11202783
[13]

Lee S, Lee J. 2015. Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Scientia Horticulturae 195:206−15

doi: 10.1016/j.scienta.2015.09.011
[14]

Lee S, An R, Grewal P, Yu Z, Borherova Z, et al. 2016. High-performing windowfarm hydroponic system: Transcriptomes of fresh produce and microbial communities in response to beneficial bacterial treatment. Molecular Plant-Microbe Interactions 29:965−76

doi: 10.1094/MPMI-08-16-0162-R
[15]

Dhawi F. 2023. The role of plant growth-promoting microorganisms (PGPMs) and their feasibility in hydroponics and vertical farming. Metabolites 13:247

doi: 10.3390/metabo13020247
[16]

Aini N, Yamika WSD, Ulum B. 2018. Effect of nutrient concentration, PGPR and AMF on plant growth, yield and nutrient uptake of hydroponic lettuce. International Journal of Agriculture & Biology 21:175−83

[17]

Moncada A, Vetrano F, Miceli A. 2020. Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce. Agronomy 10:1523

doi: 10.3390/agronomy10101523
[18]

Mei C, Zhou D, Chretien RL, Turner A, Hou G, et al. 2023. A potential application of Pseudomonas psychrotolerans IALR632 for lettuce growth promotion in hydroponics. Microorganisms 11:376

doi: 10.3390/microorganisms11020376
[19]

Purnima, Singh P. 2023. Growth effects of Pseudomonas, a plant growth-promoting rhizobacteria on spinach (Spinacia oleracea L.) - a review. Current Agriculture Research Journal 11:63−68

doi: 10.12944/carj.11.1.05
[20]

Hsu CK, Micallef SA. 2017. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria. International Journal of Food Microbiology 259:1−6

doi: 10.1016/j.ijfoodmicro.2017.07.012
[21]

Urashima Y, Hori K. 2003. Selection of PGPR which promotes the growth of spinach. Japanese Journal of Soil Science and Plant Nutrition 74:157−62

doi: 10.20710/dojo.74.2_157
[22]

Dasgan HY, Kacmaz S, Arpaci BB, İkiz B, Gruda NS. 2023. Biofertilizers improve the leaf quality of hydroponically grown baby spinach (Spinacia oleracea L.). Agronomy 13:575

doi: 10.3390/agronomy13020575
[23]

Dasgan HY, Aldiyab A, Elgudayem F, Ikiz B, Gruda NS. 2022. Effect of biofertilizers on leaf yield, nitrate amount, mineral content and antioxidants of basil (Ocimum basilicum L.) in a floating culture. Scientific Reports 12:20917

doi: 10.1038/s41598-022-24799-x
[24]

Putra AM, Anastasya NA, Rachmawati SW, Yusnawan E, Syib'li MA, et al. 2024. Growth performance and metabolic changes in lettuce inoculated with plant growth promoting bacteria in a hydroponic system. Scientia Horticulturae 327:112868

doi: 10.1016/j.scienta.2024.112868