[1]

Castaings L, Marchive C, Meyer C, Krapp A. 2011. Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. Journal of Experimental Botany 62:1391−97

doi: 10.1093/jxb/erq375
[2]

Nacry P, Bouguyon E, Gojon A. 2013. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil 370:1−29

doi: 10.1007/s11104-013-1645-9
[3]

Wang YY, Cheng YH, Chen KE, Tsay YF. 2018. Nitrate transport, signaling, and use efficiency. Annual Review of Plant Biology 63:85−122

doi: 10.1146/annurev-arplant-042817-040056
[4]

Raytek LM, Dastmalchi M. 2022. Plant nutrition: an architect of nitrate-hunger cues. Current Biology 32:R1320−R1323

doi: 10.1016/j.cub.2022.10.055
[5]

Ahmed M, Rauf M, Akhtar M, Mukhtar Z, Saeed NA. 2020. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environmental Science and Pollution Research 27:17661−70

doi: 10.1007/s11356-020-08236-y
[6]

Bi YM, Kant S, Clark J, Gidda S, Ming F, et al. 2009. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant, Cell & Environment 32:1749−60

doi: 10.1111/j.1365-3040.2009.02032.x
[7]

Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, et al. 2016. Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiology 172:1237−48

doi: 10.1104/pp.16.01047
[8]

Tahir MM, Lu Z, Wang C, Shah K, Li S, et al. 2022. Nitrate application induces adventitious root growth by regulating gene expression patterns in apple rootstocks. Journal of Plant Growth Regulation 41:3467−78

doi: 10.1007/s00344-021-10527-8
[9]

Tahir MM, Li S, Mao J, Liu Y, Li K, et al. 2021. High nitrate inhibited adventitious roots formation in apple rootstock by altering hormonal contents and miRNAs expression profiles. Scientia Horticulturae 286:110230

doi: 10.1016/j.scienta.2021.110230
[10]

Ishikawa K, Ohmori T, Miyamoto H, Ito T, Kumagai Y, et al. 2013. Denitrification in soil amended with thermophile-fermented compost suppresses nitrate accumulation in plants. Applied Microbiology and Biotechnology 97:1349−59

doi: 10.1007/s00253-012-4004-5
[11]

Jian S, Liao Q, Song H, Liu Q, Lepo JE, et al. 2018. NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation. Plant Physiology 178:1473−88

doi: 10.1104/pp.18.00410
[12]

Rashid M, Bera S, Medvinsky AB, Sun GQ, Li BL, et al. 2018. Adaptive regulation of nitrate transceptor NRT1.1 in fluctuating soil nitrate conditions. iScience 2:41−50

doi: 10.1016/j.isci.2018.03.007
[13]

Unkefer PJ, Knight TJ, Martinez RA. 2023. The intermediate in a nitrate-responsive ω-amidase pathway in plants may signal ammonium assimilation status. Plant Physiology 191:715−28

doi: 10.1093/plphys/kiac501
[14]

Fang X, Fang S, Ye Z, Liu D, Zhao K, et al. 2021. NRT1.1 dual-affinity nitrate transport/signalling and its roles in plant abiotic stress resistance. Frontiers in Plant Science 12:715694

doi: 10.3389/fpls.2021.715694
[15]

Chai S, Li E, Zhang Y, Li S. 2020. NRT1.1-mediated nitrate suppression of root coiling relies on PIN2- and AUX1-mediated auxin transport. Frontiers in Plant Science 11:671

doi: 10.3389/fpls.2020.00671
[16]

Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, et al. 2015. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. Journal of Plant Research 128:679−86

doi: 10.1007/s10265-015-0710-2
[17]

Kiba T, Krapp A. 2016. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant and Cell Physiology 57:707−14

doi: 10.1093/pcp/pcw052
[18]

Krapp A, David LC, Chardin C, Girin T, Marmagne A, et al. 2014. Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany 65:789−98

doi: 10.1093/jxb/eru001
[19]

Su H, Wang T, Ju C, Deng J, Zhang T, et al. 2021. Abscisic acid signaling negatively regulates nitrate uptake via phosphorylation of NRT1.1 by SnRK2s in Arabidopsis. Journal of Integrative Plant Biology 63:597−610

doi: 10.1111/jipb.13057
[20]

Zhao Y. 2010. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology 61:49−64

doi: 10.1146/annurev-arplant-042809-112308
[21]

Hu Q, Shu J, Li W, Wang G. 2021. Role of auxin and nitrate signaling in the development of root system architecture. Frontiers in Plant Science 12:690363

doi: 10.3389/fpls.2021.690363
[22]

Zhang S, Zhu L, Shen C, Ji Z, Zhang H, et al. 2021. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. The Plant Cell 33:566−80

doi: 10.1093/plcell/koaa037
[23]

Zhao Z, Wang C, Yu X, Tian Y, Wang W, et al. 2022. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proceedings of the National Academy of Sciences of the United States of America 119:e2121671119

doi: 10.1073/pnas.2121671119
[24]

Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, et al. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563−74

doi: 10.1242/dev.02012
[25]

Keller AH, Fallon MD. 2012. Auxins : structure, biosynthesis and functions. New York: Nova Science Publishers

[26]

Li S, Xie Z, Hu C, Zhang J. 2016. A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science 7:47

doi: 10.3389/fpls.2016.00047
[27]

Chandler JW. 2016. Auxin response factors. Plant, Cell & Environment 39:1014−28

doi: 10.1111/pce.12662
[28]

Deng P, Jing W, Cao C, Sun M, Chi W, et al. 2022. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proceedings of the National Academy of Sciences of the United States of America 119:e2210338119

doi: 10.1073/pnas.221033811
[29]

Tan BZ, Close DC, Quin PR, Swarts ND. 2021. Nitrogen use efficiency, allocation, and remobilization in apple trees: uptake is optimized with pre-harvest N supply. Frontiers in Plant Science 12:657070

doi: 10.3389/fpls.2021.657070
[30]

Kowalczyk W, Wrona D, Przybylko S. 2022. Effect of nitrogen fertilization of apple orchard on soil mineral nitrogen content, yielding of the apple trees and nutritional status of leaves and fruits. Agriculture 12:2169

doi: 10.3390/agriculture12122169
[31]

Liu G, Rui L, Yang Y, Liu R, Li H, et al. 2023. Identification and functional characterization of MdNRT1.1 in nitrogen utilization and abiotic stress tolerance in Malus domestica. International Journal of Molecular Sciences 24:9291

doi: 10.3390/ijms24119291
[32]

Zheng P, Wang X, Yang Y, You C, Zhang Z, et al. 2020. Identification of phytochrome-interacting factor family members and functional analysis of MdPIF4 in Malus domestica. International Journal of Molecular Sciences 21:7350

doi: 10.3390/ijms21197350
[33]

Feng Z, Li T, Wang X, Sun W, Zhang T, et al. 2022. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Science 316:111158

doi: 10.1016/j.plantsci.2021.111158
[34]

Liu R, Li H, Rui L, Liu G, Wang T, et al. 2023. An apple NITRATE REDUCTASE 2 gene positively regulates nitrogen utilization and abiotic stress tolerance in Arabidopsis and apple callus. Plant Physiology and Biochemistry 196:23−32

doi: 10.1016/j.plaphy.2023.01.026
[35]

Wang D, Yang K, Wang X, Lin X, Rui L, et al. 2022. Overexpression of MdZAT5, an C2H2-type zinc finger protein, regulates anthocyanin accumulation and salt stress response in apple calli and Arabidopsis. International Journal of Molecular Sciences 23:1897

doi: 10.3390/ijms23031897
[36]

Rui L, Yang Y, Zheng P, Wang C, Wang X, et al. 2022. Genome-wide analysis of MdABF Subfamily and functional identification of MdABF1 in drought tolerance in apple. Environmental and Experimental Botany 199:104904

doi: 10.1016/j.envexpbot.2022.104904
[37]

Liu Y, Gao N, Ma Q, Zhang J, Wang X, et al. 2021. The MdABI5 transcription factor interacts with the MdNRT1.5/MdNPF7.3 promoter to fine-tune nitrate transport from roots to shoots in apple. Horticulture Research 8:236

doi: 10.1038/s41438-021-00667-z
[38]

Yang Y, Zheng P, Ren Y, Yao Y, You C, et al. 2021. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. Planta 253:46

doi: 10.1007/s00425-020-03528-6
[39]

Liu X, Liu H, Li H, An X, Song L, et al. 2022. MdMYB10 affects nitrogen uptake and reallocation by regulatingthe nitrate transporter MdNRT2.4-1 in red flesh apple. Horticulture Research 9:uhac016

doi: 10.1093/hr/uhac016
[40]

An J, Zhang X, Liu Y, Wang X, You C, et al. 2021. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany 72:1460−72

doi: 10.1093/jxb/eraa525
[41]

Ji X, Li H, Qiao Z, Zhang J, Sun W, et al. 2022. The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple. Plant Physiology 189:1005−20

doi: 10.1093/plphys/kiac084
[42]

Cox KL Jr. 2021. Nodding on and off: transcription factor cis-elements that regulate nitrate-dependent gene expression for root nodule symbiosis. The Plant Cell 33:2101−03

doi: 10.1093/plcell/koab108
[43]

Li S, Xiao F, Yang D, Lyu X, Ma C, et al. 2021. Nitrate transport and distribution in soybean plants with dual-root systems. Frontiers in Plant Science 12:661054

doi: 10.3389/fpls.2021.661054
[44]

Krouk G, Crawford NM, Coruzzi GM, Tsay YF. 2010. Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology 13:265−72

doi: 10.1016/j.pbi.2009.12.003
[45]

Hu J, Israeli A, Ori N, Sun T. 2018. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. The Plant Cell 30:1710−28

doi: 10.1105/tpc.18.00363
[46]

Jia Z, Giehl RFH, Hartmann A, Estevez JM, Bennett MJ, et al. 2023. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Current Biology 33:3926−3941.e5

doi: 10.1016/j.cub.2023.08.040
[47]

Lin J, Ali A, Chu N, Fu H, Huang M, et al. 2023. Identification of ARF transcription factor gene family and its defense responses to bacterial infection and salicylic acid treatment in sugarcane. Frontiers in Microbiology 14:1257355

doi: 10.3389/fmicb.2023.1257355
[48]

Mo Z, Zhang Y, Hu L, Zhai M, Xuan J. 2023. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in pecan indicates its possible roles during graft union formation. Scientia Horticulturae 322:112401

doi: 10.1016/j.scienta.2023.112401
[49]

Chen X, Liu Y, Zhang X, Zheng B, Han Y, et al. 2023. PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach PpARF. Horticulture Research 10:uhad158

doi: 10.1093/hr/uhad158
[50]

Wang Y, Dai M, Wu X, Zhang S, Shi Z, et al. 2022. An ARF1-binding factor triggering programmed cell death and periderm development in pear russet fruit skin. Horticulture Research 9:uhab061

doi: 10.1093/hr/uhab061
[51]

Sun J, Zheng N. 2015. Molecular mechanism underlying the plant NRT1.1 dual-affinity nitrate transporter. Frontiers in Physiology 6:386

doi: 10.3389/fphys.2015.00386
[52]

Ye J, Tian W, Zhou M, Zhu Q, Du W, et al. 2021. STOP1 activates NRT1.1-mediated nitrate uptake to create a favorable rhizospheric pH for plant adaptation to acidity. The Plant Cell 33:3658−74

doi: 10.1093/plcell/koab226
[53]

Liu Z, Ma Z, Li J, Bian N, Guo Z, et al. 2023. Interfering small ubiquitin modifiers (SUMO) exhibits apple's enhanced tolerance to nitrogen deficiency. Fruit Research 3:24

doi: 10.48130/FruRes-2023-0024
[54]

Guo T, Yang Z, Bao R, Fu X, Wang N, et al. 2023. The m6A reader MhYTP2 regulates the stability of its target mRNAs contributing to low nitrogen tolerance in apple (Malus domestica). Horticulture Research 10:uhad094

doi: 10.1093/hr/uhad094