[1] |
Allen DJ, Ort DR. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science 6:36−42 doi: 10.1016/S1360-1385(00)01808-2 |
[2] |
Janská A, Maršík P, Zelenková S, Ovesná J. 2010. Cold stress and acclimation – what is important for metabolic adjustment? Plant Biology 12: 395−405 doi: 10.1111/j.1438-8677.2009.00299.x |
[3] |
Fan J, Hu Z, Xie Y, Chan Z, Chen K, et al. 2015. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Frontiers in Plant Science 6:925 doi: 10.3389/fpls.2015.00925 |
[4] |
Bi H, Li F, Dong X, Ai X. 2017. Effects of transketolase gene silencing on photosynthesis in cucumber seedlings under high temperature stress. Plant Physiology Journal 53:1859−66 doi: 10.13592/j.cnki.ppj.2017.0084 |
[5] |
Bi H, Li F, Wang H, Ai X. 2019. Overexpression of transketolase gene promotes chilling tolerance by increasing the activities of photosynthetic enzymes, alleviating oxidative damage and stabilizing cell structure in Cucumis sativus L. Physiologia Plantarum 167:502−15 doi: 10.1111/ppl.12903 |
[6] |
Ahmad I, Song X, Hussein Ibrahim ME, Jamal Y, Younas MU, et al. 2023. The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress. Frontiers in Plant Science 14:1108507 doi: 10.3389/fpls.2023.1108507 |
[7] |
Singh A, Roychoudhury A. 2023. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Reports 42:961−74 doi: 10.1007/s00299-023-03013-w |
[8] |
Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society 80:2587 doi: 10.1021/ja01543a060 |
[9] |
Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, et al. 1995. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International 35:627−34 |
[10] |
Balzer I, Hardeland R. 1996. Melatonin in algae and higher plants - possible new roles as a phytohormone and antioxidant. Botanica Acta 109:180−83 doi: 10.1111/j.1438-8677.1996.tb00560.x |
[11] |
Simlat M, Ptak A, Skrzypek E, Warchoł M, Morańska E, et al. 2018. Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. PeerJ 6:e5009 doi: 10.7717/peerj.5009 |
[12] |
Mao J, Niu C, Li K, Chen S, Tahir MM, et al. 2020. Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11. BMC Plant Biology 20: 536 doi: 10.1186/s12870-020-02747-z |
[13] |
Liu K, Jing T, Wang Y, Ai X, Bi H. 2022. Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI. Environmental and Experimental Botany 200:104915 doi: 10.1016/j.envexpbot.2022.104915 |
[14] |
Arnao MB, Hernández-Ruiz J. 2020. Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction 33:77−87 doi: 10.1007/s00497-020-00388-8 |
[15] |
Shi H, Jiang C, Ye T, Tan D, Reiter RJ, et al. 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany 66:681−94 doi: 10.1093/jxb/eru373 |
[16] |
Shi H, Chen Y, Tan D, Reiter RJ, Chan Z, et al. 2015. Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. Journal of Pineal Research 59:102−8 doi: 10.1111/jpi.12244 |
[17] |
Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, et al. 2018. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. Journal of Plant Physiology 220:115−27 doi: 10.1016/j.jplph.2017.11.003 |
[18] |
Zhang X, Feng Y, Jing T, Liu X, Ai X, et al. 2021. Melatonin promotes the chilling tolerance of cucumber seedlings by regulating antioxidant system and relieving photoinhibition. Frontiers in Plant Science 12:789617 doi: 10.3389/fpls.2021.789617 |
[19] |
Xu C, Zhang X, Liu C, Liu K, Bi H, et al. 2022. Alleviating effect of exogenous melatonin and calcium on the peroxidation damages of cucumber under high temperature stress. Chinese Journal of Applied Ecology 33:2725−35 doi: 10.13287/j.1001-9332.202210.010 |
[20] |
Sharma A, Wang J, Xu D, Tao S, Chong S, et al. 2020. Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of The Total Environment 713:136675 doi: 10.1016/j.scitotenv.2020.136675 |
[21] |
Zhang T, Shi Z, Zhang X, Zheng S, Wang J, et al. 2020. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae 262:109070 doi: 10.1016/j.scienta.2019.109070 |
[22] |
Liu C, Kang H, Wang Y, Yao Y, Gao Z, et al. 2021. Melatonin relieves ozone stress in grape leaves by inhibiting ethylene biosynthesis. Frontiers in Plant Science 12:702874 doi: 10.3389/fpls.2021.702874 |
[23] |
Han Q, Huang B, Ding C, Zhang Z, Chen Y, et al. 2017. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Frontiers in Plant Science 8:785 doi: 10.3389/fpls.2017.00785 |
[24] |
Korkmaz A, Karaca A, Kocacinar F, Cuci Y. 2017. The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress. Journal of Agricultural Science 23:167−76 |
[25] |
Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, et al. 2022. Melatonin induced cold tolerance in plants: physiological and molecular responses. Frontiers in Plant Science 13:843071 doi: 10.3389/fpls.2022.843071 |
[26] |
Zhang Z, Zhang Y. 2021. Melatonin in plants: what we know and what we don't. Food Quality and Safety 5:fyab009 doi: 10.1093/fqsafe/fyab009 |
[27] |
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56:165−85 doi: 10.1146/annurev.arplant.56.032604.144046 |
[28] |
Huang X, Hou L, Meng J, You H, Li Z, et al. 2018. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Molecular Plant 11:970−82 doi: 10.1016/j.molp.2018.05.001 |
[29] |
Abu-Ghosh S, Iluz D, Dubinsky Z, Miller G. 2021. Exogenous abscisic acid confers salinity tolerance in Chlamydomonas reinhardtii during its life cycle. Journal of Phycology 57:1323−34 doi: 10.1111/jpy.13174 |
[30] |
Zhang Y, Fu X, Feng Y, Zhang X, Bi H, et al. 2022. Abscisic acid mediates salicylic acid induced chilling tolerance of grafted cucumber by activating H2O2 biosynthesis and accumulation. International Journal of Molecular Sciences 23:16057 doi: 10.3390/ijms232416057 |
[31] |
Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60:324−49 doi: 10.1016/j.ecoenv.2004.06.010 |
[32] |
Huang X, Shi H, Hu Z, Liu A, Amombo E, et al. 2017. ABA is involved in regulation of cold stress response in bermudagrass. Frontiers in Plant Science 8:1613 doi: 10.3389/fpls.2017.01613 |
[33] |
Daszkowska-Golec A, Collin A, Sitko K, Janiak A, Kalaji HM, et al. 2019. Genetic and physiological dissection of photosynthesis in barley exposed to drought stress. International Journal of Molecular Sciences 20:6341 doi: 10.3390/ijms20246341 |
[34] |
Lv C, Li F, Ai X, Bi H. 2022. H2O2 participates in ABA regulation of grafting-induced chilling tolerance in cucumber. Plant Cell Reports 41:1115−30 doi: 10.1007/s00299-022-02841-6 |
[35] |
Xu L, Yue Q, Xiang G, Bian F, Yao Y. 2018. Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Horticulture Research 5:41 doi: 10.1038/s41438-018-0045-y |
[36] |
Li C, Tan D, Liang D, Chang C, Jia D, et al. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany 66:669−80 doi: 10.1093/jxb/eru476 |
[37] |
Feng Y, Fu X, Han L, Xu C, Liu C, et al. 2021. Nitric oxide functions as a downstream signal for melatonin-induced cold tolerance in cucumber seedlings. Frontiers in Plant Science 12:686545 doi: 10.3389/fpls.2021.686545 |
[38] |
Qiu S. 2022. Mitigative effects of melatonin on chilling stress of cucumber in solar greenhouse. Thesis. University of Shandong Agricultural, CN. |
[39] |
Bian F, Xiao Q, Hao G, Sun Y, Lu W, et al. 2018. Effect of root-applied melatonin on endogenous melatonin and chlorophyll fluorescence characteristics in grapevine under NaCl stress. Scientia Agricultura Sinica 51:952−63 doi: 10.3864/j.issn.0578-1752.2018.05.013 |
[40] |
Gong J, Xiang J. 2001. Study on non-destructive rapid measurement method of cucumber leaf area. Chinese Vegetables 2001:7−9 |
[41] |
Zhu G, Liu Z, Zhu P. 1986. A study on Determination of lethal temperature with logistic function. Journal of Nanjing Agricultural University 3:11−16 |
[42] |
Dong X, Bi H, Wu G, Ai X. 2013. Drought-induced chilling tolerance in cucumber involves membrane stabilisation improved by antioxidant system. International Journal of Plant Production 7:67−80 doi: 10.22069/IJPP.2012.922 |
[43] |
Li Z, Gong M. 2005. Improvement of measurement method for superoxide anion radical in plant. Acta Botanica Yunnanica 27:211−16 doi: 10.3969/j.issn.2095-0845.2005.02.012 |
[44] |
Zhang X, Liu F, Zhai J, Li F, Bi H, et al. 2020. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. Planta 251:69 doi: 10.1007/s00425-020-03362-w |
[45] |
Stewart RRC, Bewley JD. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology 65:245−48 doi: 10.1104/pp.65.2.245 |
[46] |
Omran RG. 1980. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology 65:407−8 doi: 10.1104/pp.65.2.407 |
[47] |
Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867−80 doi: 10.1093/oxfordjournals.pcp.a076232 |
[48] |
Law MY, Charles SA, Halliwell B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. The Biochemical Journal 210:899−03 doi: 10.1042/bj2100899 |
[49] |
Sartory DP, Grobbelaar JU. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177−87 doi: 10.1007/BF00031869 |
[50] |
Demming-Adams B, Adams WW III. 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Biology 43:599−626. doi: 10.1146/annurev.pp.43.060192.003123 |
[51] |
Strasser RJ, Tsimilli-Michael M, Qiang S, Goltse V. 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797:1313−26 doi: 10.1016/j.bbabio.2010.03.008 |
[52] |
Lei X, Zhu R, Zhang G, Dai Y. 2004. Attenuation of coldinduced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. Journal of Pineal Research 36:126−31 doi: 10.1046/j.1600-079X.2003.00106.x |
[53] |
Kang K, Lee K, Park S, Kim YS, Back K. 2010. Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. Journal of Pineal Research 49:176−82 doi: 10.1111/j.1600-079X.2010.00783.x |
[54] |
Zhang J, Shi Y, Zhang X, Du H, Xu B, et al. 2017. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environmental and Experimental Botany 138:36−45 doi: 10.1016/j.envexpbot.2017.02.012 |
[55] |
El-Yazied AA, Ibrahim MFM, Ibrahim MAR, Nasef IN, Al-Qahtani SM, et al. 2022. Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes, sugar metabolism, aba homeostasis and antioxidant enzymes. Plants 11:1151 doi: 10.3390/plants11091151 |
[56] |
Li H, Mo Y, Cui Q, Yang X, Guo Y. 2019. Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and-susceptible watermelon genotypes. Plant Science 278:32−43. doi: 10.1016/j.plantsci.2018.10.016 |
[57] |
Wang D, Chen Q, Chen W, Guo Q, Xia Y, et al. 2021. Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings. Environmental and Experimental Botany 181:104291 doi: 10.1016/j.envexpbot.2020.104291 |
[58] |
Zahedi SM, Hosseini MS, Abadía J, Marjani M. 2020. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.) Plant Physiology and Biochemistry 49:313−23 doi: 10.1016/j.plaphy.2020.02.021 |
[59] |
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. doi: 10.3390/antiox9080681 |
[60] |
Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology 69:209−36. doi: 10.1146/annurev-arplant-042817-040322 |
[61] |
Zhang X, Du H, Shi Q, Gong B. 2022. Loss of GSNOR increases abiotic stress sensitivity via regulating MAPK-ethylene cascade signaling in Solanum lycopersicum L. Environmental and Experimental Botany 199:104872 doi: 10.1016/j.envexpbot.2022.104872 |
[62] |
Zhang Z, Yang C, Gao H, Zhang L, Fan X, et al. 2014. The higher sensitivity of PSI to ROS results in lower chilling-light tolerance of photosystems in young leaves of cucumber. Journal of Photochemistry and Photobiology B: Biology 137:127−34 doi: 10.1016/j.jphotobiol.2013.12.012 |
[63] |
Ruban AV. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170:1903−16 doi: 10.1104/pp.15.01935 |
[64] |
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. 2010. Recent advances in understanding the assembly and repair of photosystem II. Annals of Botany 106:1−16 doi: 10.1093/aob/mcq059 |
[65] |
Li X, Wang H, Jin H. 2020. Light signaling-dependent regulation of PSII biogenesis and functional maintenance. Plant Physiology 183:1855−68 doi: 10.1104/pp.20.00200 |
[66] |
Acebron K, Matsubara S, Jedmowski C, Emin D, Muller O, et al. 2021. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytologist 229:2104−19 doi: 10.1111/nph.16984 |
[67] |
Lou Y, Sun H, Zhu C, Yang K, Li X, et al. 2022. PeVDE, a violaxanthin de-epoxidase gene from moso bamboo, confers photoprotection ability in transgenic Arabidopsis under high light. Frontiers in Plant Science 13: 927949 doi: 10.3389/fpls.2022.927949 |
[68] |
Aro EM, Virgin I, Andersson B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1143:113−34 doi: 10.1016/0005-2728(93)90134-2 |
[69] |
Srivastava A, Guissé B, Greppin H, Strasser RJ. 1997. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1320:95−106 doi: 10.1016/S0005-2728(97)00017-0 |
[70] |
Medina J, Catalá R, Salinas J. 2011. The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Science 180:3−11 doi: 10.1016/j.plantsci.2010.06.019 |
[71] |
Zhao C, Zhang Z, Xie S, Si T, Li Y, et al. 2016. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology 171:2744−59 doi: 10.1104/pp.16.00533 |