[1]

Boehm MMA, Ojeda DI, Cronk QCB. 2017. Dissecting the 'bacon and eggs' phenotype: transcriptomics of post-anthesis colour change in Lotus. Annals of Botany 120:563−75

doi: 10.1093/aob/mcx090
[2]

Zhang Y, Zhao X, Huang S, Zhang L, Zhao J. 2012. Temporal pattern of floral color change and time retention of post-change flowers in Weigela japonica var. sinica (Caprifoliaceae). Journal of Systematics and Evolution 50:519−26

doi: 10.1111/j.1759-6831.2012.00218.x
[3]

Brito VLG, Weynans K, Sazima M, Lunau K. 2015. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Frontiers in Plant Science 6:362

doi: 10.3389/fpls.2015.00362
[4]

Weiss MR. 1995. Floral color change: a widespread functional convergence. American Journal of Botany 82:167−85

doi: 10.1002/j.1537-2197.1995.tb11486.x
[5]

Monniaux M. 2023. Unusual suspects in flower color evolution. Science 379:534−35

doi: 10.1126/science.adg2774
[6]

Xia Y, Chen W, Xiang W, Wang D, Xue B, et al. 2021. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. BMC Plant Biology 21:98

doi: 10.1186/s12870-021-02877-y
[7]

Amrhein N, Frank G. 1989. Anthocyanin formation in the petals of Hibiscus mutabilis L. Zeitschrift für Naturforschung C 44:357−60

doi: 10.1515/znc-1989-5-604
[8]

Macnish AJ, Jiang C, Negre-Zakharov F, Reid MS. 2010. Physiological and molecular changes during opening and senescence of Nicotiana mutabilis flowers. Plant Science 179:267−72

doi: 10.1016/j.plantsci.2010.05.011
[9]

Farzad M, Griesbach R, Hammond J, Weiss MR, Elmendorf HG. 2003. Differential expression of three key anthocyanin biosynthetic genes in a color-changing flower, Viola cornuta cv. yesterday, today and tomorrow. Plant Science 165:1333−42

doi: 10.1016/j.plantsci.2003.08.001
[10]

Fukuchi-Mizutani M, Akagi M, Ishiguro K, Katsumoto Y, Fukui Y, et al. 2011. Biochemical and molecular characterization of anthocyanidin/flavonol 3-glucosylation pathways in Rosa×hybrida. Plant Biotechnology 28:239−44

doi: 10.5511/plantbiotechnology.10.1220a
[11]

Li M, Sun Y, Lu X, Debnath B, Mitra S, et al. 2019. Proteomics reveal the profiles of color change in Brunfelsia acuminata flowers. International Journal of Molecular Sciences 20:2000

doi: 10.3390/ijms20082000
[12]

Yan J, Wang M, Zhang L. 2018. Light induces petal color change in Quisqualis indica (Combretaceae). Plant Diversity 40:28−34

doi: 10.1016/j.pld.2017.11.004
[13]

McGimpsey VJ, Lord JM. 2015. In a world of white, flower colour matters: a white–purple transition signals lack of reward in an alpine Euphrasia. Austral Ecology 40:701−08

doi: 10.1111/aec.12238
[14]

Zhao D, Tao J. 2015. Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science 6:261

doi: 10.3389/fpls.2015.00261
[15]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[16]

Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, et al. 2018. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics 50:772−77

doi: 10.1038/s41588-018-0110-3
[17]

Yan Y, Zhao J, Lin S, Li M, Liu J, et al. 2023. Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. Journal of Experimental Botany 74:erad253

doi: 10.1093/jxb/erad253
[18]

He G, Zhang R, Jiang S, Wang H, Ming F. 2023. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Horticulture Research 10: uhad080

doi: 10.1093/hr/uhad080
[19]

Wang Y, Xiao Y, Sun Y, Zhang X, Du B, et al. 2023. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. Plant Physiology 192:2030−48

doi: 10.1093/plphys/kiad137
[20]

Zhang S, Chen Y, Zhao L, Li C, Yu J, et al. 2020. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology 40:413−23

doi: 10.1093/treephys/tpaa004
[21]

Alabd A, Ahmad M, Zhang X, Gao Y, Peng L, et al. 2022. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear. Horticulture Research 9:uhac199

doi: 10.1093/hr/uhac199
[22]

Jiang S, Chen M, He N, Chen X, Wang N, et al. 2019. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Horticulture Research 6:40

doi: 10.1038/s41438-019-0118-6
[23]

Kaur S, Sharma N, Kapoor P, Chunduri V, Pandey AK, et al. 2021. Spotlight on the overlapping routes and partners for anthocyanin transport in plants. Physiologia Plantarum 171:868−81

doi: 10.1111/ppl.13378
[24]

Marrs KA, Alfenito MR, Lloyd AM, Walbot V. 1995. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397−400

doi: 10.1038/375397a0
[25]

Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, et al. 1998. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. The Plant Cell 10:1135−49

doi: 10.1105/tpc.10.7.1135
[26]

Sun Y, Li H, Huang J. 2012. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Molecular Plant 5:387−400

doi: 10.1093/mp/ssr110
[27]

Kitamura S, Akita Y, Ishizaka H, Narumi I, Tanaka A. 2012. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen. Journal of Plant Physiology 169:636−42

doi: 10.1016/j.jplph.2011.12.011
[28]

Cheng J, Liao L, Zhou H, Gu C, Wang L, et al. 2015. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers. Journal of Experimental Botany 66:7227−39

doi: 10.1093/jxb/erv419
[29]

Zhao Y, Dong W, Zhu Y, Allan AC, Lin-Wang K, et al. 2020. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal 18:1284−95

doi: 10.1111/pbi.13291
[30]

Pérez-Díaz R, Madrid-Espinoza J, Salinas-Cornejo J, González-Villanueva E, Ruiz-Lara S. 2016. Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinífera. Frontiers in Plant Science 7:1166

doi: 10.3389/fpls.2016.01166
[31]

Hu B, Zhao J, Lai B, Qin Y, Wang H, et al. 2016. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Reports 35:831−43

doi: 10.1007/s00299-015-1924-4
[32]

Luo H, Dai C, Li Y, Feng J, Liu Z, et al. 2018. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. Journal of Experimental Botany 69:2595−608

doi: 10.1093/jxb/ery096
[33]

Wei K, Wang L, Zhang Y, Ruan L, Li H, et al. 2019. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal 97:825−40

doi: 10.1111/tpj.14161
[34]

Kou M, Liu Y, Li Z, Zhang Y, Tang W, et al. 2019. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant Physiology and Biochemistry 135:395−403

doi: 10.1016/j.plaphy.2018.12.028
[35]

Wang R, Lu N, Liu C, Dixon RA, Wu Q, et al. 2022. MtGSTF7, a TT19-like GST gene, is essential for accumulation of anthocyanins, but not proanthocyanins in Medicago truncatula. Journal of Experimental Botany 73:4129−46

doi: 10.1093/jxb/erac112
[36]

Goodman CD, Casati P, Walbot V. 2004. A multidrug resistance–associated protein involved in anthocyanin transport in Zea mays. The Plant Cell 16:1812−26

doi: 10.1105/tpc.022574
[37]

Francisco RM, Regalado A, Ageorges A, Burla BJ, Bassin B, et al. 2013. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. The Plant Cell 25:1840−54

doi: 10.1105/tpc.112.102152
[38]

Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, et al. 2009. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiology 150:402−15

doi: 10.1104/pp.109.135624
[39]

Zhu Q, Xie X, Zhang J, Xiang G, Li Y, et al. 2013. In silico analysis of a MRP transporter gene reveals its possible role in anthocyanins or flavonoids transport in Oryze sativa. American Journal of Plant Sciences 4:555−60

doi: 10.4236/ajps.2013.43072
[40]

Behrens CE, Smith KE, Iancu CV, Choe J, Dean JV. 2019. Transport of anthocyanins and other flavonoids by the Arabidopsis ATP-binding cassette transporter AtABCC2. Scientific Reports 9:437

doi: 10.1038/s41598-018-37504-8
[41]

Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, et al. 2007. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant Cell 19:2023−38

doi: 10.1105/tpc.106.046029
[42]

Pal L, Dwivedi V, Gupta SK, Saxena S, Pandey A, et al. 2023. Biochemical analysis of anthocyanin and proanthocyanidin and their regulation in determining chickpea flower and seed coat colour. Journal of Experimental Botany 74:130−48

doi: 10.1093/jxb/erac392
[43]

Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, et al. 2003. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. The Plant Cell 15:1689−703

doi: 10.1105/tpc.012963
[44]

Zhao J, Huhman D, Shadle G, He X, Sumner LW, et al. 2011. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. The Plant Cell 23:1536−55

doi: 10.1105/tpc.110.080804
[45]

Shisa M, Takano T. 1964. Effect of temperature and light on the coloration of rose flowers. Journal of the Japanese Society for Horticultural Science 33:140−46

doi: 10.2503/jjshs.33.140
[46]

Hennayake CK, Kanechi M, Yasuda N, Uno Y, Inagaki N. 2006. Irradiation of UV-B induces biosynthesis of anthocyanins in flower petals of rose, Rosa hybrida cv. 'Charleston' and 'Ehigasa'. Environmental Control in Biology 44:103−10

doi: 10.2525/ecb.44.103
[47]

Luo J, Li H, Bai B, Yu H, You J. 2013. Effect of light on the anthocyanin biosythesis and expression of CHS and DFR in Rosa chinensis 'Spectra'. Molecular Plant Breeding 11:126−31

[48]

Su M, Damaris RN, Hu Z, Yang P, Deng J. 2021. Metabolomic analysis on the petal of 'Chen Xi' rose with light-induced color changes. Plants 10:2065

doi: 10.3390/plants10102065
[49]

Zhang Y, Wu Z, Feng M, Chen J, Qin M, et al. 2021. The circadian-controlled PIF8–BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS homeostasis at night. The Plant Cell 33:2716−35

doi: 10.1093/plcell/koab152
[50]

Wan H, Yu C, Han Y, Guo X, Luo L, et al. 2019. Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (Rosa spp.). Frontiers in Plant Science 10:123

doi: 10.3389/fpls.2019.00123
[51]

Wan H, Yu C, Han Y, Guo X, Ahmad S, et al. 2018. Flavonols and carotenoids in yellow petals of rose cultivar (Rosa 'Sun City'): a possible rich source of bioactive compounds. Journal of Agricultural and Food Chemistry 66:4171−81

doi: 10.1021/acs.jafc.8b01509
[52]

Ren C, Chen C, Dong S, Wang R, Xian B, et al. 2022. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in flowers of safflower (Carthamus tinctorius L.) during colour-transition. PeerJ 10:e13591

doi: 10.7717/peerj.13591
[53]

Han Y, Yu J, Zhao T, Cheng T, Wang J, et al. 2019. Dissecting the genome-wide evolution and function of R2R3-MYB transcription factor family in Rosa chinensis. Genes 10:823

doi: 10.3390/genes10100823
[54]

Sun Y, Zhang X, Zhong M, Dong X, Yu D, et al. 2020. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. Plant Molecular Biology 104:81−95

doi: 10.1007/s11103-020-01026-7
[55]

Ullah I, Yuan W, Uzair M, Li S, Rehman OU, et al. 2022. Molecular characterization of bHLH transcription factor family in rose (Rosa chinensis Jacq.) under Botrytis cinerea infection. Horticulturae 8:989

doi: 10.3390/horticulturae8110989
[56]

Li D, Li X, Liu X, Zhang Z. 2023. Comprehensive analysis of bZIP gene family and function of RcbZIP17 on Botrytis resistance in rose (Rosa chinensis). Gene 849:146867

doi: 10.1016/j.gene.2022.146867
[57]

Geng L, Su L, Fu L, Lin S, Zhang J, et al. 2022. Genome-wide analysis of the rose (Rosa chinensis) NAC family and characterization of RcNAC091. Plant Molecular Biology 108:605−19

doi: 10.1007/s11103-022-01250-3
[58]

Liu X, Li D, Zhang S, Xu Y, Zhang Z. 2019. Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY41 in gray mold resistance. BMC Plant Biology 19:522

doi: 10.1186/s12870-019-2139-6
[59]

Shalmani A, Fan S, Jia P, Li G, Muhammad I, et al. 2018. Genome identification of B-BOX gene family members in seven Rosaceae species and their expression analysis in response to flower induction in Malus domestica. Molecules 23:1763

doi: 10.3390/molecules23071763
[60]

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. 2014. Pfam: the protein families database. Nucleic Acids Research 42:D222−D230

doi: 10.1093/nar/gkt1223
[61]

Wei L, Zhu Y, Liu R, Zhang A, Zhu M, et al. 2019. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Scientific Reports 9:9196

doi: 10.1038/s41598-019-45744-5
[62]

Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49:D458−D460

doi: 10.1093/nar/gkaa937
[63]

Shao D, Li Y, Zhu Q, Zhang X, Liu F, et al. 2021. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Science 305:110827

doi: 10.1016/j.plantsci.2021.110827
[64]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[65]

Kong Y, Wang H, Lang L, Dou X, Bai J. 2022. Effect of developmental stages on genes involved in middle and downstream pathway of volatile terpene biosynthesis in rose petals. Genes 13:1177

doi: 10.3390/genes13071177
[66]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[67]

Jung S, Lee T, Cheng CH, Buble K, Zheng P, et al. 2019. 15 years of GDR: new data and functionality in the Genome Database for Rosaceae. Nucleic Acids Research 47:D1137−D1145

doi: 10.1093/nar/gky1000
[68]

Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106

doi: 10.1038/ng.3886
[69]

de Vienne DM. 2016. Lifemap: exploring the entire tree of life. PLoS Biology 14:e2001624

doi: 10.1371/journal.pbio.2001624
[70]

Liu M, Xiao F, Zhu J, Fu D, Wang Z, Xiao R. 2023. Combined PacBio Iso-Seq and Illumina RNA-seq analysis of the Tuta absoluta (Meyrick) transcriptome and cytochrome P450 genes. Insects 14:363

doi: 10.3390/insects14040363
[71]

Cheng C, Yu Q, Wang Y, Wang H, Dong Y, et al. 2021. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida). The Plant Cell 33:1229−51

doi: 10.1093/plcell/koab031
[72]

Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. 2015. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169

doi: 10.1186/s12859-015-0611-3
[73]

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, et al. 2023. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 51:D638−D646

doi: 10.1093/nar/gkac1000
[74]

Kong Y, Wang H, Lang L, Dou X, Bai J. 2021. Metabolome-based discrimination analysis of five Lilium bulbs associated with differences in secondary metabolites. Molecules 26:1340

doi: 10.3390/molecules26051340
[75]

Hennayake CK, Kanechi M, Uno Y, Inagaki N. 2007. Differential expression of anthocyanin biosynthetic genes in 'Charleston' roses. Acta Horticulturae 760:643−50

doi: 10.17660/actahortic.2007.760.91
[76]

Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N. 2014. The still mysterious roles of cysteine-containing glutathione transferases in plants. Frontiers in Pharmacology 5:192

doi: 10.3389/fphar.2014.00192
[77]

Liu Y, Qi Y, Zhang A, Wu H, Liu Z, et al. 2019. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). Plant Molecular Biology 100:451−65

doi: 10.1007/s11103-019-00870-6
[78]

Li B, Zhang X, Duan R, Han C, Yang J, et al. 2022. Genomic analysis of the glutathione S-transferase family in pear (Pyrus communis) and functional identification of PcGST57 in anthocyanin accumulation. International Journal of Molecular Sciences 23:746

doi: 10.3390/ijms23020746
[79]

Davis GV, Glover BJ. 2024. Characterisation of the R2R3 Myb subgroup 9 family of transcription factors in tomato. PLoS ONE 19:e0295445

doi: 10.1371/journal.pone.0295445
[80]

Muñoz-Gómez S, Suárez-Baron H, Alzate JF, González F, Pabón-Mora N. 2021. Evolution of the subgroup 6 R2R3-MYB genes and their contribution to floral color in the perianth-bearing piperales. Frontiers in Plant Science 12:633227

doi: 10.3389/fpls.2021.633227
[81]

Narbona E, del Valle JC, Arista M, Buide ML, Ortiz PL. 2021. Major flower pigments originate different colour signals to pollinators. Frontiers in Ecology and Evolution 9:743850

doi: 10.3389/fevo.2021.743850
[82]

Ohashi K, Makino TT, Arikawa K. 2015. Floral colour change in the eyes of pollinators: testing possible constraints and correlated evolution. Functional Ecology 29:1144−55

doi: 10.1111/1365-2435.12420
[83]

Farzad M, Griesbach R, Weiss MR. 2002. Floral color change in Viola cornuta L. (Violaceae): a model system to study regulation of anthocyanin production. Plant Science 162:225−31

doi: 10.1016/S0168-9452(01)00557-X
[84]

Rezende FM, Clausen MH, Rossi M, Furlan CM. 2020. The regulation of floral colour change in Pleroma raddianum (DC.) gardner. Molecules 25:4664

doi: 10.3390/molecules25204664
[85]

Ueda Y, Akimoto S. 2001. Cross- and self-compatibility in various species of the genus Rosa. The Journal of Horticultural Science and Biotechnology 76:392−95

doi: 10.1080/14620316.2001.11511382
[86]

Li M, Yang Y, Wang H, Fan Y, Sun P, et al. 2022. Identification and analysis of self incompatibility S-RNase in rose. Acta Horticulturae Sinica 49:157−65

doi: 10.16420/j.issn.0513-353x.2020-0758
[87]

Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, et al. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants 6:921−28

doi: 10.1038/s41477-020-0725-0
[88]

Li Y, Xu P, Chen G, Wu J, Liu Z, et al. 2020. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5–bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology 61:826−37

doi: 10.1093/pcp/pcaa010
[89]

Liu H, Su J, Zhu Y, Yao G, Allan AC, et al. 2019. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research 6:134

doi: 10.1038/s41438-019-0217-4
[90]

Zhao L, Sun J, Cai Y, Yang Q, Zhang Y, et al. 2022. PpHYH is responsible for light-induced anthocyanin accumulation in fruit peel of Prunus persica. Tree Physiology 42:1662−77

doi: 10.1093/treephys/tpac025
[91]

Bai S, Tao R, Tang Y, Yin L, Ma Y, et al. 2019. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal 17:1985−97

doi: 10.1111/pbi.13114
[92]

Liu Y, Lin G, Yin C, Fang Y. 2020. B-box transcription factor 28 regulates flowering by interacting with constans. Scientific Reports 10:17789

doi: 10.1038/s41598-020-74445-7