[1]

da Silva Ferreira V, Sant’Anna C. 2016. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology 33:20

doi: 10.1007/s11274-016-2181-6
[2]

Li Y, Cui Y, Hu X, Liao X, Zhang Y. 2019. Chlorophyll supplementation in early life prevents diet-induced obesity and modulates gut microbiota in mice. Molecular Nutrition & Food Research 63:1801219

doi: 10.1002/mnfr.201801219
[3]

Queiroz Zepka L, Jacob-Lopes E, Roca M. 2019. Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science 26:94−100

doi: 10.1016/j.cofs.2019.04.004
[4]

Cao J, Li F, Li Y, Chen H, Liao X, et al. 2021. Hydrophobic interaction driving the binding of soybean protein isolate and chlorophyll: Improvements to the thermal stability of chlorophyll. Food Hydrocolloids 113:106465

doi: 10.1016/j.foodhyd.2020.106465
[5]

Yasuda M, Oda K, Ueda T, Tabata M. 2019. Physico-chemical chlorophyll-a species in aqueous alcohol solutions determine the rate of its discoloration under UV light. Food Chemistry 277:463−70

doi: 10.1016/j.foodchem.2018.11.005
[6]

Rontani JF, Amiraux R, Smik L, Wakeham SG, Paulmier A, et al. 2021. Type II photosensitized oxidation in senescent microalgal cells at different latitudes: Does low under-ice irradiance in polar regions enhance efficiency? Science of The Total Environment 779:146363

doi: 10.1016/j.scitotenv.2021.146363
[7]

Özkan G, Ersus Bilek S. 2015. Enzyme-assisted extraction of stabilized chlorophyll from spinach. Food Chemistry 176:152−57

doi: 10.1016/j.foodchem.2014.12.059
[8]

Zhang Z, Niu L, Li D, Liu C, Ma R, et al. 2017. Low intensity ultrasound as a pretreatment to drying of daylilies: Impact on enzyme inactivation, color changes and nutrition quality parameters. Ultrasonics Sonochemistry 36:50−58

doi: 10.1016/j.ultsonch.2016.11.007
[9]

Li F, Zhou L, Cao J, Wang Z, Liao X, et al. 2022. Aggregation induced by the synergy of sodium chloride and high-pressure improves chlorophyll stability. Food Chemistry 366:130577

doi: 10.1016/j.foodchem.2021.130577
[10]

Viera I, Pérez-Gálvez A, Roca M. 2019. Green natural colorants. Molecules 24:154

doi: 10.3390/molecules24010154
[11]

Masone D, Chanforan C. 2015. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view. Computational Biology and Chemistry 56:152−58

doi: 10.1016/j.compbiolchem.2015.04.006
[12]

Umena Y, Kawakami K, Shen JR, Kamiya N. 2011. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55−60

doi: 10.1038/nature09913
[13]

Pan X, Liu Z, Li M, Chang W. 2013. Architecture and function of plant light-harvesting complexes II. Current Opinion in Structural Biology 23:515−25

doi: 10.1016/j.sbi.2013.04.004
[14]

Pinnola A, Dall'Osto L, Gerotto C, Morosinotto T, Bassi R, et al. 2013. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomi trella patens. The Plant Cell 25:3519−34

doi: 10.1105/tpc.113.114538
[15]

Cupellini L, Calvani D, Jacquemin D, Mennucci B. 2020. Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nature Communications 11:662

doi: 10.1038/s41467-020-14488-6
[16]

Hong JE, Lim JH, Kim TY, Jang HY, Oh HB, et al. 2020. Photo-Oxidative Protection of Chlorophyll a in C-Phycocyanin Aqueous Medium. Antioxidants 9:1235

doi: 10.3390/antiox9121235
[17]

Chmeliov J, Bricker WP, Lo C, Jouin E, Valkunas L, et al. 2015. An ‘all pigment’model of excitation quenching in LHCII. Physical Chemistry Chemical Physics 17:15857−67

doi: 10.1039/C5CP01905B
[18]

Dall'Osto L, Caffarri S, Bassi R. 2005. A Mechanism of Nonphotochemical Energy Dissipation, Independent from PsbS, Revealed by a Conformational Change in the Antenna Protein CP26. The Plant Cell 17:1217−32

doi: 10.1105/tpc.104.030601
[19]

Perwez Hussain S, Harris CC. 2007. Inflammation and cancer: An ancient link with novel potentials. International Journal of Cancer 121:2373−80

doi: 10.1002/ijc.23173
[20]

Toprak Aktas E, Yildiz H. 2011. Effects of electroplasmolysis treatment on chlorophyll and carotenoid extraction yield from spinach and tomato. Journal of Food Engineering 106:339−46

doi: 10.1016/j.jfoodeng.2011.05.033
[21]

Li F, Cao J, Wang Z, Liao X, Hu X, et al. 2022. Dual aggregation in ground state and ground-excited state induced by high concentrations contributes to chlorophyll stability. Food Chemistry 383:132447

doi: 10.1016/j.foodchem.2022.132447
[22]

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. 2016. GAUSSIAN16. Revision C. 01. Gaussian Inc., Wallingford, CT, USA.

[23]

Scott AP, Radom L. 1996. Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. The Journal of Physical Chemistry 100:16502−13

doi: 10.1021/jp960976r
[24]

Lu T, Chen F. 2012. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 33:580−92

doi: 10.1002/jcc.22885
[25]

Liu Z, Lu T, Chen Q. 2020. Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: Focusing on molecular adsorption and stacking. Carbon 171:514−23

doi: 10.1016/j.carbon.2020.09.048
[26]

Alster J, Polívka T, Arellano JB, Chábera P, Vácha F, et al. 2010. β-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes. Chemical Physics 373:90−97

doi: 10.1016/j.chemphys.2010.02.006
[27]

Mele A, Mendichi R, Selva A. 1998. Non-covalent associations of cyclomaltooligosaccharides (cyclodextrins) with trans-β-carotene in water: evidence for the formation of large aggregates by light scattering and NMR spectroscopy. Carbohydrate Research 310:261−67

doi: 10.1016/S0008-6215(98)00193-1
[28]

Polyakov NE, Leshina TV, Salakhutdinov NF, Kispert LD. 2006. Host−guest complexes of carotenoids with β-glycyrrhizic acid. The Journal of Physical Chemistry B 110:6991−98

doi: 10.1021/jp056038l
[29]

Wei X, Su X, Cao P, Liu X, Chang W, et al. 2016. Structure of spinach photosystem II–LHCII super complex at 3.2 Å resolution. Nature 534:69−74

doi: 10.1038/nature18020
[30]

Xiaodong S, Mei L. 2021. Advances in structural biology of photosystem complexes in higher plants. Chinese Journal of Nature 43(3):165−75

doi: 10.3969/j.issn.0253-9608.2021.03.002
[31]

Polívka T, Sundström V. 2004. Ultrafast dynamics of carotenoid excited states−from solution to natural and artificial systems. Chemical Reviews 104:2021−72

doi: 10.1021/cr020674n
[32]

Pšencík J, Arellano JB, Collins AM, Laurinmäki P, Torkkeli M, et al. 2013. Structural and functional roles of carotenoids in chlorosomes. Journal of Bacteriology 195:1727−34

doi: 10.1128/JB.02052-12
[33]

Magdaong NCM, Blankenship RE. 2018. Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. Journal of Biological Chemistry 293:5018−25

doi: 10.1074/jbc.TM117.000233
[34]

Govindjee U. 2014. Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9032-1

[35]

Rontani JF, Aubert C. 1994. Effect of oxy-free radicals upon the phytyl chain during chlorophyll a photodegradation. Journal of Photochemistry and Photobiology A: Chemistry 79:167−72

doi: 10.1016/1010-6030(93)03762-6
[36]

Yakovlev AG, Taisova AS. 2024. Quenching of bacteriochlorophyll a triplet state by carotenoids in the chlorosome baseplate of green bacterium Chloroflexus aurantiacus. Physical Chemistry Chemical Physics 26:8815−23

doi: 10.1039/D4CP00287C