[1]

Tian J, Peng Z, Zhang J, Song T, Wan H, et al. 2015. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple. Plant Biotechnology Journal 13:948−61

doi: 10.1111/pbi.12331
[2]

Tai D, Tian J, Zhang J, Song T, Yao Y. 2014. A Malus crabapple chalcone synthase gene, McCHS, regulates red petal color and flavonoid biosynthesis. PLoS One 9:e110570

doi: 10.1371/journal.pone.0110570
[3]

Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology Biochemistry 72:21−34

doi: 10.1016/j.plaphy.2013.02.001
[4]

Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, et al. 2007. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiology 48:958−70

doi: 10.1093/pcp/pcm066
[5]

Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, et al. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal 49:414−27

doi: 10.1111/j.1365-313X.2006.02964.x
[6]

Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, et al. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology 142:1216−32

doi: 10.1104/pp.106.088104
[7]

Yang T, Ma H, Li Y, Zhang Y, Zhang J, et al. 2021. Apple MPK4 mediates phosphorylation of MYB1 to enhance light-induced anthocyanin accumulation. The Plant Journal 106:1728−45

doi: 10.1111/tpj.15267
[8]

Wang S, Li L, Zhang Z, Fang Y, Li D, Chen X et al. 2022. Ethylene precisely regulates anthocyanin synthesis in apple via a module comprising MdEIL1, MdMYB1, and MdMYB17. Horticulture Research 9:uhac034

doi: 10.1093/hr/uhac034
[9]

An J, Zhang X, Liu Y, Wang X, You C, et al. 2021. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany 72:1460−72

doi: 10.1093/jxb/eraa525
[10]

Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, et al. 2011. The Jasmonate-ZIM-domain proteins interact with the WD-repeat/ bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell 23:1795−814

doi: 10.1105/tpc.111.083261
[11]

Wang Y, Wang N, Xu H, Jiang S, Fang H, et al. 2018. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Horticulture Research 5:59

doi: 10.1038/s41438-018-0068-4
[12]

Xie Y, Tan H, Ma Z, Huang J. 2016. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. Molecular Plant 9:711−21

doi: 10.1016/j.molp.2016.01.014
[13]

Luo J, Zhou J, Zhang J. 2018. Aux/IAA gene family in plants: molecular structure, regulation, and function. International Journal of Molecular Sciences 19:259

doi: 10.3390/ijms19010259
[14]

Wang P, Lu S, Xie M, Wu M, Ding S, et al. 2020. Identification and expression analysis of the small auxin-up RNA (SAUR) gene family in apple by inducing of auxin. Gene 750:144725

doi: 10.1016/j.gene.2020.144725
[15]

Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, et al. 2012. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. The Plant Journal 70:978−90

doi: 10.1111/j.1365-313X.2012.04946.x
[16]

Tian Z, Wu B, Liu J, Zhang L, Wu T, et al. 2024. Genetic variations in MdSAUR36 participate in the negative regulation of mesocarp cell division and fruit size in Malus species. Molecular Breeding 44:1

doi: 10.1007/s11032-024-01441-4
[17]

Yang Y, Huang M, Qi L, Song J, Li Q, et al. 2017. Differential expression analysis of genes related to graft union healing in Pyrus ussuriensis Maxim by cDNA-AFLP. Scientia Horticulturae 225:700−06

doi: 10.1016/j.scienta.2017.07.028
[18]

Li D, Han F, Liu X, Lv H, Li L, et al. 2021. Localized graft incompatibility in kiwifruit: analysis of homografts and heterografts with different rootstock & scion combinations. Scientia Horticulturae 283:110080

doi: 10.1016/j.scienta.2021.110080
[19]

Chen Z, Zhao J, Hu F, Qin Y, Wang X, et al. 2017. Transcriptome changes between compatible and incompatible graft combination of Litchi chinensis by digital gene expression profile. Scientific Reports 7:3954

doi: 10.1038/s41598-017-04328-x
[20]

Melnyk CW, Meyerowitz EM. 2015. Plant grafting. Current Biology 25:R183−R188

doi: 10.1016/j.cub.2015.01.029
[21]

Li H, Testerink C, Zhang Y. 2021. How roots and shoots communicate through stressful times. Trends in Plant Science 26:940−52

doi: 10.1016/j.tplants.2021.03.005
[22]

Duan X, Zhang W, Huang J, Hao L, Wang S, et al. 2016. PbWoxT1 mRNA from pear (Pyrus betulaefolia) undergoes long-distance transport assisted by a polypyrimidine tract binding protein. New Phytologist 210:511−24

doi: 10.1111/nph.13793
[23]

Kurotani KI, Notaguchi M. 2021. Cell-to-cell connection in plant grafting-molecular insights into symplasmic reconstruction. Plant and Cell Physiology 62:1362−71

doi: 10.1093/pcp/pcab109
[24]

Lv X, Sun Y, Hao P, Zhang C, Tian J, et al. 2021. RBP differentiation contributes to selective transmissibility of OPT3 mRNAs. Plant Physiology 187:1587−604

doi: 10.1093/plphys/kiab366
[25]

Hao P, Lv X, Fu M, Xu Z, Tian J, et al. 2022. Long-distance mobile mRNA CAX3 modulates iron uptake and zinc compartmentalization. EMBO Reports 23:e53698

doi: 10.15252/embr.202153698
[26]

Zhang F, Zhong H, Zhou X, Pan M, Xu J, et al. 2022. Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis. Horticulture Research 9:uhac055

doi: 10.1093/hr/uhac055
[27]

Huang N, Yu T. 2021. Non-sterile grafting methods for Arabidopsis. In Arabidopsis Protocols, Sanchez-Serrano JJ, Salinas J. Humana, New York, NY. 2200:113−19. https://doi.org/10.1007/978-1-0716-0880-7_4

[28]

Zhang J, Xu H, Wang N, Jiang S, Fang H, et al. 2018. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology 98:205−18

doi: 10.1007/s11103-018-0770-5
[29]

An J, Zhang X, You C, Bi S, Wang X, et al. 2019. MdWRKY40 promotes wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergoes MdBT2-mediated degradation. New Phytologist 224:380−95

doi: 10.1111/nph.16008
[30]

An J, Wang X, Zhang X, Xu H, Bi S, et al. 2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnology Journal 18:337−53

doi: 10.1111/pbi.13201
[31]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[32]

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28:27−30

doi: 10.1093/nar/28.1.27
[33]

Salas E, Dueñas M, Schwarz M, Winterhalter P, Cheynier V, et al. 2005. Characterization of pigments from different high speed countercurrent chromatography wine fractions. Journal of Agricultural and Food Chemistry 53:4536–46

doi: 10.1021/jf0478096
[34]

Wang S, Li L, Fang Y, Li D, Mao Z, et al. 2022. MdERF1B-MdMYC2 module integrates ethylene and jasmonic acid to regulate the biosynthesis of anthocyanin in apple. Horticulture Research 9:uhac142

doi: 10.1093/hr/uhac142
[35]

Liu Y, Zhang X, Liu X, Zheng P, Su L, et al. 2022. Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. Plant Physiology 188:2342−63

doi: 10.1093/plphys/kiab605
[36]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[37]

Zhong H, Liu Z, Zhang F, Zhou X, Sun X, et al. 2022. Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine. Horticulture Research 9:uhac103

doi: 10.1093/hr/uhac103
[38]

Holton TA, Cornish EC. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7:1071−83

doi: 10.2307/3870058
[39]

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93

doi: 10.1104/pp.126.2.485
[40]

Andersen OM, Markham KR. 2006. Flavonoids. Chemistry, biochemistry and application. Boca Raton: CRC Press. 1256 pp. https://doi.org/10.1201/9781420039443

[41]

Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, et al. 2017. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nature Plants 3:17112

doi: 10.1038/nplants.2017.112
[42]

Wang Y, Chen W, Gao X, He L, Yang X, et al. 2019. Rootstock-mediated effects on cabernet sauvignon performance: vine growth, berry ripening, flavonoids, and aromatic profiles. International Journal of Molecular Sciences 20:401

doi: 10.3390/ijms20020401
[43]

Li W, Mao J, Yang S, Guo Z, Ma Z, et al. 2018. Anthocyanin accumulation correlates with hormones in the fruit skin of 'Red Delicious' and its four generation bud sport mutants. BMC Plant Biology 18:363

doi: 10.1186/s12870-018-1595-8
[44]

Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, et al. 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist 179:1004−16

doi: 10.1111/j.1469-8137.2008.02511.x
[45]

Li H, Liu Z, Wang X, Han Y, You C, et al. 2023. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple. Plant, Cell & Environment 46: 3902–18

doi: 10.1111/pce.14709