[1] |
Akpan NM, Ogbonna PE, Onyia VN, Okechukwu EC, Dominic II, et al. 2017. Genetic control and heterosis of quantitative traits in several local eggplant genotypes. Notulae Scientia Biologicae 9:520−24 doi: 10.15835/nsb9410122 |
[2] |
Mistry C, Kathiria KB, Sabolu S, Kumar S. 2016. Heritability and gene effects for yield related quantitative traits in eggplant. Annals of Agricultural Sciences 61:237−46 doi: 10.1016/j.aoas.2016.07.001 |
[3] |
Uddin MS, Billah M, Afroz R, Rahman S, Jahan N, et al. 2021. Evaluation of 130 eggplant (Solanum melongena L.) genotypes for future breeding program based on qualitative and quantitative traits, and various genetic parameters. Horticulturae 7:376 doi: 10.3390/horticulturae7100376 |
[4] |
Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD. 2002. Conservation of gene function in the solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161:1713−26 doi: 10.1093/genetics/161.4.1713 |
[5] |
Frary A, Frary A, Daunay MC, Huvenaars K, Mank R, et al. 2014. QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis. Euphytica 197:211−28 doi: 10.1007/s10681-013-1060-6 |
[6] |
Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, et al. 2014. QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS One 9:e89499 doi: 10.1371/journal.pone.0089499 |
[7] |
Portis E, Cericola F, Barchi L, Toppino L, Acciarri N, et al. 2015. Association mapping for fruit, plant and leaf morphology traits in eggplant. PLoS One 10:e0135200 doi: 10.1371/journal.pone.0135200 |
[8] |
Mangino G, Vilanova S, Plazas M, Prohens J, Gramazio P. 2021. Fruit shape morphometric analysis and QTL detection in a set of eggplant introgression lines. Scientia Horticulturae 282:110006 doi: 10.1016/j.scienta.2021.110006 |
[9] |
Shi S, Li D, Li S, Wang Y, Tang X, et al. 2023. Comparative transcriptomic analysis of early fruit development in eggplant (Solanum melongena L.) and functional characterization of SmOVATE5. Plant Cell Reports 42:321-36 doi: 10.1007/s00299-022-02959-7 |
[10] |
Abel S, Savchenko T, Levy M. 2005. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evolutionary Biology 5:72 doi: 10.1186/1471-2148-5-72 |
[11] |
Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527−30 doi: 10.1126/science.1153040 |
[12] |
Pan Y, Liang X, Gao M, Liu H, Meng H, et al. 2017. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theoretical and Applied Genetics 130:573−86 doi: 10.1007/s00122-016-2836-6 |
[13] |
Wei Q, Wang J, Wang W, Hu T, Hu H, et al. 2020. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture Research 7:153 doi: 10.1038/s41438-020-00391-0 |
[14] |
Yang M, Zhu L, Pan C, Xu L, Liu Y, et al. 2015. Transcriptomic analysis of the regulation of rhizome formation in temperate and Tropical Lotus (Nelumbo nucifera). Scientific Reports 5:13059 doi: 10.1038/srep13059 |
[15] |
Xie Y, Liu X, Sun C, Song X, Li X, et al. 2023. CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. Horticulture Research 10:uhad007 doi: 10.1093/hr/uhad007 |
[16] |
Gillaspy G, Ben-David H, Gruissem W. 1993. Fruits: a developmental perspective. The Plant Cell 5:1439−51 doi: 10.1105/tpc.5.10.1439 |
[17] |
Zhang C, Tanabe K, Wang S, Tamura F, Yoshida A, et al. 2006. The impact of cell division and cell enlargement on the evolution of fruit size in Pyrus pyrifolia. Annals of Botany 98:537−43 doi: 10.1093/aob/mcl144 |
[18] |
Xiao H, Radovich C, Welty N, Hsu J, Li D, et al. 2009. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology 9:49 doi: 10.1186/1471-2229-9-49 |
[19] |
Eldridge T, Łangowski Ł, Stacey N, Jantzen F, Moubayidin L, et al. 2016. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 143:3394−406 doi: 10.1242/dev.135327 |
[20] |
Baldazzi V, Valsesia P, Génard M, Bertin N. 2019. Organ-wide and ploidy-dependent regulation both contribute to cell-size determination: evidence from a computational model of tomato fruit. Journal of Experimental Botany 70:6215−228 doi: 10.1093/jxb/erz398 |
[21] |
Mauxion JP, Chevalier C, Gonzalez N. 2021. Complex cellular and molecular events determining fruit size. Trends in Plant Science 26:1023−38 doi: 10.1016/j.tplants.2021.05.008 |
[22] |
Jiang N, Gao D, Xiao H, van der Knaap E. 2009. Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. The Plant Journal 60:181−93 doi: 10.1111/j.1365-313X.2009.03946.x |
[23] |
Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E. 2011. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiology 157:1175−86 doi: 10.1104/pp.111.181065 |
[24] |
Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E. 2013. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Molecular Genetics and Genomics 288:111−29 doi: 10.1007/s00438-013-0733-0 |
[25] |
Wang Y, Clevenger JP, Illa-Berenguer E, Meulia T, van der Knaap E, et al. 2019. A comparison of sun, ovate, fs8.1 and auxin application on tomato fruit shape and gene expression. Plant and Cell Physiology 60:1067−81 doi: 10.1093/pcp/pcz024 |
[26] |
Evans J R. 2013. Improving photosynthesis. Plant Physiology 162:1780−93 doi: 10.1104/pp.113.219006 |
[27] |
Cosgrove DJ. 2024. Structure and growth of plant cell walls. Nature Reviews Molecular Cell Biology 25:340−58 doi: 10.1038/s41580-023-00691-y |
[28] |
Baskin TI. 2005. Anisotropic expansion of the plant cell wall. Annual Review of Cell and Developmental Biology 21:203−222 doi: 10.1146/annurev.cellbio.20.082503.103053 |
[29] |
Cosgrove DJ. 2016. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. Journal of Experimental Botany 67:463−76 doi: 10.1093/jxb/erv511 |
[30] |
Thitamadee S, Tuchihara K, Hashimoto T. 2002. Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193−96 doi: 10.1038/417193a |
[31] |
Stoppin-Mellet V, Gaillard J, Timmers T, Neumann E, Conway J, et al. 2007. Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. Plant Physiology and Biochemistry 45:867−77 doi: 10.1016/j.plaphy.2007.09.005 |
[32] |
Komis G, Luptovčiak I, Ovečka M, Samakovli D, Šamajová O, et al. 2017. Katanin effects on dynamics of cortical microtubules and mitotic arrays in Arabidopsis thaliana revealed by advanced live-cell imaging. Frontiers in Plant Science 8:866 doi: 10.3389/fpls.2017.00866 |
[33] |
Lloyd C. 2011. Dynamic microtubules and the texture of plant cell walls. International Review of Cell and Molecular Biology 287:287−329 doi: 10.1016/B978-0-12-386043-9.00007-4 |
[34] |
Chan J. 2012. Microtubule and cellulose microfibril orientation during plant cell and organ growth. Journal of Microscopy 247:23−32 doi: 10.1111/j.1365-2818.2011.03585.x |
[35] |
Li Q, Luo S, Zhang L, Feng Q, Song L, et al. 2023. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. Horticulture Research 10:uhad108 doi: 10.1093/hr/uhad108 |
[36] |
Li J, Wang X, Qin T, Zhang Y, Liu X, et al. 2011. MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. The Plant Cell 23:4411−27 doi: 10.1105/tpc.111.092684 |
[37] |
Qin T, Li J, Yuan M, Mao T. 2012. Characterization of the role of calcium in regulating the microtubule-destabilizing activity of MDP25. Plant Signaling & Behavior 7:708−10 doi: 10.4161/psb.20336 |
[38] |
Wendrich JR, Yang BJ, Mijnhout P, Xue HW, De Rybel B, et al. 2018. IQD proteins integrate auxin and calcium signaling to regulate microtubule dynamics during Arabidopsis development. bioRxiv doi: 10.1101/275560 |
[39] |
Clevenger JP, Van Houten J, Blackwood M, Rodríguez GR, Jikumaru Y, et al. 2015. Network analyses reveal shifts in transcript profiles and metabolites that accompany the expression of SUN and an elongated tomato fruit. Plant Physiology 168:1164−78 doi: 10.1104/pp.15.00379 |
[40] |
Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, et al. 2017. The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiology 173:1692−708 doi: 10.1104/pp.16.01743 |
[41] |
Zang J, Klemm S, Pain C, Duckney P, Bao Z, et al. 2021. A novel plant actin-microtubule bridging complex regulates cytoskeletal and ER structure at ER-PM contact sites. Current Biology 31:1251−1260.E4 doi: 10.1016/j.cub.2020.12.009 |
[42] |
Bashline L, Lei L, Li S, Gu Y. 2014. Cell wall, cytoskeleton, and cell expansion in higher plants. Molecular Plant 7:586−600 doi: 10.1093/mp/ssu018 |