[1]

Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−37

doi: 10.1007/s00018-011-0673-y
[2]

Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61:2247−54

doi: 10.1093/jxb/erq098
[3]

Moon J, Lee H, Kim M, Lee I. 2005. Analysis of flowering pathway integrators in Arabidopsis. Plant and Cell Physiology 46:292−99

doi: 10.1093/pcp/pci024
[4]

Borner R, Kampmann G, Chandler J, Gleißner R, Wisman E, et al. 2000. A MADS domain gene involved in the transition to flowering in Arabidopsis. The Plant Journal 24:591−99

doi: 10.1046/j.1365-313x.2000.00906.x
[5]

Ding L, Wang Y, Yu H. 2013. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Plant and Cell Physiology 54:595−608

doi: 10.1093/pcp/pct026
[6]

Lei H, Yuan H, Liu Y, Guo X, Liao X, et al. 2013. Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry. Gene 531:158−67

doi: 10.1016/j.gene.2013.09.036
[7]

Zhang X, Wei J, Fan S, Song M, Pang C, Wei H, et al. 2016. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.). Plant Science 242:178−86

doi: 10.1016/j.plantsci.2015.05.001
[8]

Jaudal M, Zhang L, Che C, Li G, Tang Y, et al. 2018. A SOC1-like gene MtSOC1a promotes flowering and primary stem elongation in Medicago. Journal of Experimental Botany 69:4867−80

doi: 10.1093/jxb/ery284
[9]

Li D, Liu C, Shen L, Wu Y, Chen H, et al. 2008. A repressor complex governs the integration of flowering signals in Arabidopsis. Developmental Cell 15:110−20

doi: 10.1016/j.devcel.2008.05.002
[10]

Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, et al. 2005. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiology 139:770−78

doi: 10.1104/pp.105.066928
[11]

Lee J, Oh M, Park H, Lee I. 2008. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. The Plant Journal 55:832−43

doi: 10.1111/j.1365-313X.2008.03552.x
[12]

Liu C, Chen H, Er HL, Soo HM, Kumar PP, et al. 2008. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481−91

doi: 10.1242/dev.020255
[13]

Liu C, Xi W, Shen L, Tan C, Yu H. 2009. Regulation of floral patterning by flowering time genes. Developmental Cell 16:711−22

doi: 10.1016/j.devcel.2009.03.011
[14]

Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37

doi: 10.1038/353031a0
[15]

Wellmer F, Graciet E, Riechmann JL. 2014. Specification of floral organs in Arabidopsis. Journal of Experimental Botany 65:1−9

doi: 10.1093/jxb/ert385
[16]

Carmona MJ, Chaïb J, Martínez-Zapater JM, Thomas MR. 2008. A molecular genetic perspective of reproductive development in grapevine. Journal of Experimental Botany 59:2579−96

doi: 10.1093/jxb/ern160
[17]

Palumbo F, Vannozzi A, Magon G, Lucchin M, Barcaccia G. 2019. Genomics of flower identity in grapevine (Vitis vinifera L.). Frontiers in Plant Science 10:316

doi: 10.3389/fpls.2019.00316
[18]

Sreekantan L, Thomas MR. 2006. VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Functional Plant Biology 33:1129−39

doi: 10.1071/FP06144
[19]

Dong Y, Khalil-Ur-Rehman M, Liu X, Wang X, Yang L, et al. 2022. Functional characterisation of five SVP genes in grape bud dormancy and flowering. Plant Growth Regulation 97:511−22

doi: 10.1007/s10725-022-00817-w
[20]

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673−80

doi: 10.1093/nar/22.22.4673
[21]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49

doi: 10.1093/molbev/msy096
[22]

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406−25

doi: 10.1093/oxfordjournals.molbev.a040454
[23]

Nei M, Kumar S. 2000. Molecular evolution and phylogenetics. New York: Oxford University Press.

[24]

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783−91

doi: 10.2307/2408678
[25]

Pilati S, Malacarne G, Navarro-Payá D, Tomè G, Riscica L, et al. 2021. Vitis OneGenE: a causality-based approach to generate gene networks in Vitis vinifera sheds light on the laccase and dirigent gene families. Biomolecules 11:1744

doi: 10.3390/biom11121744
[26]

Ge SX, Jung D, Yao R. 2020. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628−29

doi: 10.1093/bioinformatics/btz931
[27]

Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, et al. 2012. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. The Plant Cell 24:3489−505

doi: 10.1105/tpc.112.100230
[28]

Chen S, Songkumarn P, Liu J, Wang G. 2009. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiology 150:1111−21

doi: 10.1104/pp.109.137125
[29]

Rai GK, Rai NP, Kumar S, Yadav A, Rathaur S, et al. 2012. Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular & Developmental Biology - Plant 48:565−78

doi: 10.1007/s11627-012-9442-3
[30]

Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, et al. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343−46

doi: 10.1126/science.1068181
[31]

Untergasser A, Ruijter JM, Benes V, van den Hoff MJB. 2021. Web-based LinRegPCR: application for the visualization and analysis of (RT)-qPCR amplification and melting data. BMC Bioinformatics 22:398

doi: 10.1186/s12859-021-04306-1
[32]

Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology 8:R19

doi: 10.1186/gb-2007-8-2-r19
[33]

Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA. 2008. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology 8:131

doi: 10.1186/1471-2229-8-131
[34]

Lichtenthaler HK, Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry Supplement 1:F4.3.1−F4.3.8

doi: 10.1002/0471142913.faf0403s01
[35]

Zhang Y, Li Y, Zhang Y, Guan S, Liu C, et al. 2015. Isolation and characterization of a SOC1-Like gene from tree peony (Paeonia suffruticosa). Plant Molecular Biology Reporter 33:855−66

doi: 10.1007/s11105-014-0800-7
[36]

Wang X, Liu Z, Sun S, Wu J, Li R, et al. 2021. SISTER OF TM3 activates FRUITFULL1 to regulate inflorescence branching in tomato. Horticulture Research 8:251

doi: 10.1038/s41438-021-00677-x
[37]

Wagner D. 2009. Flower morphogenesis: timing is key. Developmental Cell 16:621−22

doi: 10.1016/j.devcel.2009.05.005
[38]

Boss PK, Sreekantan L, Thomas MR. 2006. A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Functional Plant Biology 33:31−41

doi: 10.1071/FP05191
[39]

Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, et al. 2009. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genetics 5:e1000777

doi: 10.1371/journal.pgen.1000777
[40]

Kosma DK, Parsons EP, Isaacson T, Lü S, Rose JKC, Jenks MA. 2010. Fruit cuticle lipid composition during development in tomato ripening mutants. Physiologia Plantarum 139:107−17

doi: 10.1111/j.1399-3054.2009.01342.x
[41]

España L, Heredia-Guerrero JA, Reina-Pinto JJ, Fernández-Muñoz R, Heredia A, et al. 2014. Transient silencing of CHALCONE SYNTHASE during fruit ripening modifies tomato epidermal cells and cuticle properties. Plant Physiology 166:1371−86

doi: 10.1104/pp.114.246405
[42]

Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, et al. 2012. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. The Plant Cell 24:4437−51

doi: 10.1105/tpc.112.103283
[43]

Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, et al. 2022. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. The Plant Cell 34:1002−19

doi: 10.1093/plcell/koab298
[44]

Lashbrooke J, Adato A, Lotan O, Alkan N, Tsimbalist T, et al. 2015. The tomato MIXTA-like transcription factor coordinates fruit epidermis conical cell development and cuticular lipid biosynthesis and assembly. Plant Physiology 169:2553−71

doi: 10.1104/pp.15.01145
[45]

Szymkowiak EJ, Irish EE. 2006. JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato. Planta 223:646−58

doi: 10.1007/s00425-005-0115-x
[46]

Yuste-Lisbona FJ, Quinet M, Fernández-Lozano A, Pineda B, Moreno V, et al. 2016. Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports 6:18796

doi: 10.1038/srep18796
[47]

Zhang J, Hu Z, Wang Y, Yu X, Liao C, et al. 2018. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. Plant Science 272:75−87

doi: 10.1016/j.plantsci.2018.03.031
[48]

Shitsukawa N, Ikari C, Mitsuya T, Sakiyama T, Ishikawa A, et al. 2007. Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Physiologia Plantarum 130:627−36

doi: 10.1111/j.1399-3054.2007.00927.x
[49]

Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, et al. 2009. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant, Cell & Environment 32:1412−27

doi: 10.1111/j.1365-3040.2009.02008.x
[50]

Na X, Jian B, Yao W, Wu C, Hou W, et al. 2013. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Plant Cell Reports 32:1219−29

doi: 10.1007/s00299-013-1419-0
[51]

Zhao S, Luo Y, Zhang Z, Xu M, Wang W, et al. 2014. ZmSOC1, an MADS-box transcription factor from Zea mays, promotes flowering in Arabidopsis. International Journal of Molecular Sciences 15:19987−20003

doi: 10.3390/ijms151119987
[52]

Liu X, Pan T, Liang W, Gao L, Wang X, et al. 2016. Overexpression of an orchid (Dendrobium nobile) SOC1/TM3-like ortholog, DnAGL19, in Arabidopsis regulates HOS1-FT expression. Frontiers in Plant Science 7:99

doi: 10.3389/fpls.2016.00099
[53]

Liu C, Teo ZWN, Bi Y, Song S, Xi W, et al. 2013. A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Developmental Cell 24:612−22

doi: 10.1016/j.devcel.2013.02.013
[54]

Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, et al. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613−16

doi: 10.1126/science.288.5471.1613
[55]

Voogd C, Wang T, Varkonyi-Gasic E. 2015. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. Journal of Experimental Botany 66:4699−710

doi: 10.1093/jxb/erv234
[56]

Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, et al. 2007. Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134:1901−10

doi: 10.1242/dev.003103
[57]

Fornara F, Gregis V, Pelucchi N, Colombo L, Kater M. 2008. The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. Journal of Experimental Botany 59:2181−90

doi: 10.1093/jxb/ern083
[58]

Sun L, Zhang J, Hu C. 2016. Characterization and expression analysis of PtAGL24, a SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 (SVP/AGL24)-type MADS-box gene from trifoliate orange (Poncirus trifoliata L. Raf.). Frontiers in Plant Science 7:823

doi: 10.3389/fpls.2016.00823
[59]

Li Z, Zeng S, Li Y, Li M, Souer E. 2016. Leaf-like sepals induced by ectopic expression of a SHORT VEGETATIVE PHASE (SVP)-like MADS-box gene from the basal eudicot Epimedium sagittatum. Frontiers in Plant Science 7:1461

doi: 10.3389/fpls.2016.01461
[60]

Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. The Plant Journal 26:385−94

doi: 10.1046/j.1365-313X.2001.2641042.x
[61]

Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, et al. 2012. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiology 158:439−50

doi: 10.1104/pp.111.183731
[62]

Li N, Huang B, Tang N, Jian W, Zou J, et al. 2017. The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant and Cell Physiology 58:2241−56

doi: 10.1093/pcp/pcx158
[63]

Zhang J, Hu Z, Yao Q, Guo X, Nguyen V, et al. 2018. A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Scientific Reports 8:3413

doi: 10.1038/s41598-018-21672-8
[64]

Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, et al. 2012. Tomato GDSL1 is required for cutin deposition in the fruit cuticle. The Plant Cell 24:3119−34

doi: 10.1105/tpc.112.101055
[65]

Shi J, Adato A, Alkan N, He Y, Lashbrooke J, et al. 2013. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytologist 197:468−80

doi: 10.1111/nph.12032
[66]

Londo JP, Johnson LM. 2014. Variation in the chilling requirement and budburst rate of wild Vitis species. Environmental and Experimental Botany 106:138−47

doi: 10.1016/j.envexpbot.2013.12.012
[67]

Gómez-Soto D, Ramos-Sánchez JM, Alique D, Conde D, Triozzi PM, et al. 2021. Overexpression of a SOC1-related gene promotes bud break in ecodormant poplars. Frontiers in Plant Science 12:670497

doi: 10.3389/fpls.2021.670497
[68]

Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, et al. 2008. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Genetics 40:1489−92

doi: 10.1038/ng.253
[69]

Jolliffe JB, Pilati S, Moser C, Lashbrooke JG. 2023. Beyond skin-deep: targeting the plant surface for crop improvement. Journal of Experimental Botany 74:6468−86

doi: 10.1093/jxb/erad321