[1] |
Chaachouay N, Zidane L. 2024. Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates 3:184−207 doi: 10.3390/ddc3010011 |
[2] |
Abdallah EM, Alhatlani BY, de Paula Menezes R, Martins CHG. 2023. Back to nature: medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants 12:3077 doi: 10.3390/plants12173077 |
[3] |
Asigbaase M, Adusu D, Anaba L, Abugre S, Kang-Milung S, et al. 2023. Conservation and economic benefits of medicinal plants: insights from forest-fringe communities of Southwestern Ghana. Trees, Forests and People 14:100462 doi: 10.1016/j.tfp.2023.100462 |
[4] |
Howes MJR, Quave CL, Collemare J, Tatsis EC, Twilley D, et al. 2020. Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants, People, Planet 2:463−81 doi: 10.1002/ppp3.10138 |
[5] |
Nxumalo KA, Aremu AO, Fawole OA. 2021. Potentials of medicinal plant extracts as an alternative to synthetic chemicals in postharvest protection and preservation of horticultural crops: a review. Sustainability 13:5897 doi: 10.3390/su13115897 |
[6] |
Selwal N, Rahayu F, Herwati A, Latifah E, Supriyono, et al. 2023. Enhancing secondary metabolite production in plants: exploring traditional and modern strategies. Journal of Agriculture and Food Research 14:100702 doi: 10.1016/j.jafr.2023.100702 |
[7] |
Yeshi K, Crayn D, Ritmejerytė E, Wangchuk P. 2022. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27:313 doi: 10.3390/molecules27010313 |
[8] |
Zhang S, Zhang L, Zou H, Qiu L, Zheng Y, et al. 2021. Effects of light on secondary metabolite biosynthesis in medicinal plants. Frontiers in Plant Science 12:781236 doi: 10.3389/fpls.2021.781236 |
[9] |
Huang W, Bont Z, Hervé MR, Robert CAM, Erb M. 2020. Impact of seasonal and temperature-dependent variation in root defense metabolites on herbivore preference in Taraxacum officinale. Journal of Chemical Ecology 46:63−75 doi: 10.1007/s10886-019-01126-9 |
[10] |
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, et al. 2022. Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences 23:1084 doi: 10.3390/ijms23031084 |
[11] |
Gfeller V, Waelchli J, Pfister S, Deslandes-Hérold G, Mascher F, et al. 2023. Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field. eLife 12:e84988 doi: 10.7554/eLife.84988 |
[12] |
Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, et al. 2022. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences 23:2690 doi: 10.3390/ijms23052690 |
[13] |
Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, et al. 2023. Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants. Frontiers in Plant Science 14:1248319 doi: 10.3389/fpls.2023.1248319 |
[14] |
Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. 2020. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology Advances 39:107462 doi: 10.1016/j.biotechadv.2019.107462 |
[15] |
Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, et al. 2016. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: Supplementary issue: bioinformatics methods and applications for big metagenomics data. Evolutionary Bioinformatics Online 12:5−16 doi: 10.4137/EBO.S36436 |
[16] |
Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, et al. 2018. Archaea are interactive components of complex microbiomes. Trends in Microbiology 26:70−85 doi: 10.1016/j.tim.2017.07.004 |
[17] |
Ahl H, Omer E. 2011. Medicinal and aromatic plants production under salt stress. A review. Herba Polonica 57:72−87 doi: 10.3001/0053.2789 |
[18] |
Fu Y. 2019. Biotransformation of ginsenoside Rb1 to Gyp‐XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng. Letters in Applied Microbiology 68:134−41 doi: 10.1111/lam.13090 |
[19] |
Ghiasvand M, Makhdoumi A, Matin MM, Vaezi J. 2020. Exploring the bioactive compounds from endophytic bacteria of a medicinal plant: Ephedra foliata (Ephedrales: Ephedraceae). Advances in Traditional Medicine 20:61−70 doi: 10.1007/s13596-019-00410-z |
[20] |
Liu TH, Zhang XM, Tian SZ, Chen LG, Yuan JL. 2020. Bioinformatics analysis of endophytic bacteria related to berberine in the Chinese medicinal plant Coptis teeta Wall. 3 Biotech 10:96 doi: 10.1007/s13205-020-2084-y |
[21] |
Liu Y, Liu W, Liang Z. 2015. Endophytic bacteria from Pinellia ternata, a new source of purine alkaloids and bacterial manure. Pharmaceutical Biology 53:1545−48 doi: 10.3109/13880209.2015.1016580 |
[22] |
Yang YH, Yang DS, Li GH, Liu R, Huang XW, et al. 2018. New secondary metabolites from an engineering mutant of endophytic Streptomyces sp. CS. Fitoterapia 130:17−25 doi: 10.1016/j.fitote.2018.07.019 |
[23] |
Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, et al. 2018. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Frontiers in Microbiology 9:924 doi: 10.3389/fmicb.2018.00924 |
[24] |
Taechowisan T, Lu C, Shen Y, Lumyong S. 2007. Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. Journal of Cancer Research and Therapeutics 3:86−91 doi: 10.4103/0973-1482.34685 |
[25] |
Abdelshafy Mohamad OA, Ma JB, Liu YH, Zhang D, Hua S, et al. 2020. Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Frontiers in Plant Science 11:47 doi: 10.3389/fpls.2020.00047 |
[26] |
Sabu R, Soumya KR, Radhakrishnan EK. 2017. Endophytic Nocardiopsis sp. from Zingiber officinale with both antiphytopathogenic mechanisms and antibiofilm activity against clinical isolates. 3 Biotech 7:115 doi: 10.1007/s13205-017-0735-4 |
[27] |
Yang HR, Yuan J, Liu LH, Zhang W, Chen F, et al. 2019. Endophytic Pseudomonas fluorescens induced sesquiterpenoid accumulation mediated by gibberellic acid and jasmonic acid in Atractylodes macrocephala Koidz plantlets. Plant Cell, Tissue and Organ Culture (PCTOC) 138:445−57 doi: 10.1007/s11240-019-01640-4 |
[28] |
Zhou JY, Li X, Zhao D, Deng-Wang MY, Dai CC. 2016. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea. Planta 244:699−712 doi: 10.1007/s00425-016-2536-0 |
[29] |
Yin DD, Wang YL, Yang M, Yin DK, Wang GK, et al. 2019. Analysis of Chuanxiong Rhizoma substrate on production of ligustrazine in endophytic Bacillus subtilis by ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Journal of Separation Science 42:3067−76 doi: 10.1002/jssc.201900030 |
[30] |
Ray T, Pandey SS, Pandey A, Srivastava M, Shanker K, et al. 2019. Endophytic consortium with diverse gene-regulating capabilities of benzylisoquinoline alkaloids biosynthetic pathway can enhance endogenous morphine biosynthesis in Papaver somniferum. Frontiers in Microbiology 10:925 doi: 10.3389/fmicb.2019.00925 |
[31] |
Mastan A, Bharadwaj R, Kushwaha RK, Vivek Babu CS. 2019. Functional fungal endophytes in Coleus forskohlii regulate labdane diterpene biosynthesis for elevated forskolin accumulation in roots. Microbial Ecology 78:914−26 doi: 10.1007/s00248-019-01376-w |
[32] |
dos Reis JBA, Lorenzi AS, do Vale HMM. 2022. Methods used for the study of endophytic fungi: a review on methodologies and challenges, and associated tips. Archives of Microbiology 204:675 doi: 10.1007/s00203-022-03283-0 |
[33] |
Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, et al. 2011. Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. Journal of Industrial Microbiology & Biotechnology 38:1267−78 doi: 10.1007/s10295-010-0905-4 |
[34] |
Singh VK, Kumar A. 2023. Secondary metabolites from endophytic fungi: production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 90:111−25 doi: 10.1007/s13199-023-00925-9 |
[35] |
Kusari S, Verma VC, Lamshoeft M, Spiteller M. 2012. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World Journal of Microbiology and Biotechnology 28:1287−94 doi: 10.1007/s11274-011-0876-2 |
[36] |
Fadiji AE, Babalola OO. 2020. Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi Journal of Biological Sciences 27:3622−33 doi: 10.1016/j.sjbs.2020.08.002 |
[37] |
Gladysh NS, Bogdanova AS, Kovalev MA, Krasnov GS, Volodin VV, et al. 2023. Culturable bacterial endophytes of wild white poplar (Populus alba L.) roots: a first insight into their plant growth-stimulating and bioaugmentation potential. Biology 12:1519 doi: 10.3390/biology12121519 |
[38] |
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, et al. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews 79:293−320 doi: 10.1128/MMBR.00050-14 |
[39] |
Verginer M, Leitner E, Berg G. 2010. Production of volatile metabolites by grape-associated microorganisms. Journal of Agricultural and Food Chemistry 58:8344−50 doi: 10.1021/jf100393w |
[40] |
Mishra A, Singh SP, Mahfooz S, Bhattacharya A, Mishra N, et al. 2018. Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiological Research 212−213:17−28 doi: 10.1016/j.micres.2018.04.006 |
[41] |
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, et al. 2023. Plant secondary metabolites: the weapons for biotic stress management. Metabolites 13:716 doi: 10.3390/metabo13060716 |
[42] |
Zerrouk IZ, Rahmoune B, Khelifi L, Mounir K, Baluska F, et al. 2019. Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiologiae Plantarum 41:91 doi: 10.1007/s11738-019-2881-2 |
[43] |
Bartwal A, Mall R, Lohani P, Guru SK, Arora S. 2013. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of Plant Growth Regulation 32:216−32 doi: 10.1007/s00344-012-9272-x |
[44] |
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. 2022. Microbial effectors: key determinants in plant health and disease. Microorganisms 10:1980 doi: 10.3390/microorganisms10101980 |
[45] |
Wojakowska A, Muth D, Narożna D, Mądrzak C, Stobiecki M, et al. 2013. Changes of phenolic secondary metabolite profiles in the reaction of narrow leaf lupin (Lupinus angustifolius) plants to infections with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics 9:575−89 doi: 10.1007/s11306-012-0475-8 |
[46] |
Jones AC, Seidl-Adams I, Engelberth J, Hunter CT, Alborn H, et al. 2019. Herbivorous caterpillars can utilize three mechanisms to alter green leaf volatile emission. Environmental Entomology 48:419−25 doi: 10.1093/ee/nvy191 |
[47] |
Pennisi E. 2017. How do gut microbes help herbivores? Counting the ways. Science 355:236 doi: 10.1126/science.355.6322.236 |
[48] |
Mason PA, Singer MS. 2015. Defensive mixology: combining acquired chemicals towards defence. Functional Ecology 29:441−50 doi: 10.1111/1365-2435.12380 |
[49] |
Schmelz EA, Alborn HT, Banchio E, Tumlinson JH. 2003. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216:665−73 doi: 10.1007/s00425-002-0898-y |
[50] |
Jalota K, Sharma V, Agarwal C, Jindal S. 2024. Eco-friendly approaches to phytochemical production: elicitation and beyond. Natural Products and Bioprospecting 14:5 doi: 10.1007/s13659-023-00419-7 |
[51] |
İşlek C. 2023. Abiotic elicitor strategies for improving secondary metabolite production in in vitro cultures of plants. In Phytohormones and Stress Responsive Secondary Metabolites, eds. Ozturk M, Bhat RA, Ashraf M, Tonelli FMP, Unal BT, et al . Amsterdam: Elsevier. pp. 89−98. DOI: 10.1016/b978-0-323-91883-1.00008-5 |
[52] |
Chan LK, Koay SS, Boey PL, Bhatt A. 2010. Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biological Research 43:127−35 |
[53] |
Zhou HC, Shamala LF, Yi XK, Yan Z, Wei S. 2020. Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions. Scientific Reports 10:933 doi: 10.1038/s41598-020-57805-1 |
[54] |
Devkota A, Dall’Acqua S, Comai S, Innocenti G, Jha PK. 2010. Centella asiatica (L.) urban from Nepal: Quali-quantitative analysis of samples from several sites, and selection of high terpene containing populations for cultivation. Biochemical Systematics and Ecology 38:12−22 doi: 10.1016/j.bse.2009.12.019 |
[55] |
Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, et al. 2005. Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiology 139:474−84 doi: 10.1104/pp.105.066373 |
[56] |
Jamloki A, Bhattacharyya M, Nautiyal MC, Patni B. 2021. Elucidating the relevance of high temperature and elevated CO2 in plant secondary metabolites (PSMs) production. Heliyon 7:e07709 doi: 10.1016/j.heliyon.2021.e07709 |
[57] |
Qaderi MM, Martel AB, Strugnell CA. 2023. Environmental factors regulate plant secondary metabolites. Plants 12:447 doi: 10.3390/plants12030447 |
[58] |
Salam U, Ullah S, Tang ZH, Elateeq AA, Khan Y, et al. 2023. Plant metabolomics: an overview of the role of primary and secondary metabolites against different environmental stress factors. Life 13:706 doi: 10.3390/life13030706 |
[59] |
Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, et al. 2018. Climate change effects on secondary compounds of forest trees in the Northern Hemisphere. Frontiers in Plant Science 9:1445 doi: 10.3389/fpls.2018.01445 |
[60] |
Koç E, İşlek C, Üstün A. 2010. Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi University Journal of Science 23:1−6 |
[61] |
Neugart S, Kläring HP, Zietz M, Schreiner M, Rohn S, et al. 2012. The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (Brassica oleracea var. sabellica). Food Chemistry 133:1456−65 doi: 10.1016/j.foodchem.2012.02.034 |
[62] |
Goh HH, Khairudin K, Sukiran NA, Normah MN, Baharum SN. 2016. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biology 18:130−39 doi: 10.1111/plb.12403 |
[63] |
Shohael AM, Ali MB, Yu KW, Hahn EJ, Islam R, et al. 2006. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochemistry 41:1179−85 doi: 10.1016/j.procbio.2005.12.015 |
[64] |
Brown GD. 2010. The biosynthesis of artemisinin (qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15:7603−98 doi: 10.3390/molecules15117603 |
[65] |
Glaubitz U, Erban A, Kopka J, Hincha DK, Zuther E. 2015. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner. Journal of Experimental Botany 66:6385−97 doi: 10.1093/jxb/erv352 |
[66] |
Ribeiro PR, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM. 2014. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach. BMC Plant Biology 14:223 doi: 10.1186/s12870-014-0223-5 |
[67] |
Reardon ME, Qaderi MM. 2017. Individual and interactive effects of temperature, carbon dioxide and abscisic acid on mung bean (Vigna radiata) plants. Journal of Plant Interactions 12:295−303 doi: 10.1080/17429145.2017.1353654 |
[68] |
Rahman A, Albadrani GM, Ahmad Waraich E, Hussain Awan T, Yavaş İ, et al. 2023. Plant secondary metabolites and abiotic stress tolerance: overview and implications. In Plant Abiotic Stress Responses and Tolerance Mechanisms. IntechOpen. DOI: 10.5772/intechopen.111696 |
[69] |
Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, et al. 2022. Role of promising secondary metabolites to confer resistance against environmental stresses in crop plants: current scenario and future perspectives. Frontiers in Plant Science 13:881032 doi: 10.3389/fpls.2022.881032 |
[70] |
Pant P, Pandey S, Dall’Acqua S. 2021. The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chemistry & Biodiversity 18:e2100345 doi: 10.1002/cbdv.202100345 |
[71] |
Vasconsuelo A, Boland R. 2007. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Science 172:861−75 doi: 10.1016/j.plantsci.2007.01.006 |
[72] |
Xu Z, Zhou G, Shimizu H. 2010. Plant responses to drought and rewatering. Plant Signaling & Behavior 5:649−54 doi: 10.4161/psb.5.6.11398 |
[73] |
Zobayed SMA, Afreen F, Kozai T. 2007. Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condition. Environmental and Experimental Botany 59:109−16 doi: 10.1016/j.envexpbot.2005.10.002 |
[74] |
Zhang L. 2012. Growth, physiological characteristics and total flavonoid content of Glechoma longituba in response to water stress. Journal of Medicinal Plants Research 6:1−10 doi: 10.5897/jmpr11.758 |
[75] |
Gupta P, Sharma S, Saxena S. 2015. Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Applied Biochemistry and Biotechnology 176:863−74 doi: 10.1007/s12010-015-1616-0 |
[76] |
Mulugeta SM, Radácsi P. 2022. Influence of drought stress on growth and essential oil yield of Ocimum species. Horticulturae 8:175 doi: 10.3390/horticulturae8020175 |
[77] |
Verma N, Shukla S. 2015. Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants 2:105−13 doi: 10.1016/j.jarmap.2015.09.002 |
[78] |
Oueslati S, Karray-Bouraoui N, Attia H, Rabhi M, Ksouri R, et al. 2010. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiologiae Plantarum 32:289−96 doi: 10.1007/s11738-009-0406-0 |
[79] |
Bourgou S, Kchouk ME, Bellila A, Marzouk B. 2010. Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Horticulturae 853:57−60 doi: 10.17660/actahortic.2010.853.5 |
[80] |
Zhang L. 2012. Enhancement of compatible solute and secondary metabolites production in Plantago ovata Forsk. by salinity stress. Journal of Medicinal Plants Research 6(18):3495−500 doi: 10.5897/jmpr12.159 |
[81] |
Kumar S, Diksha, Sindhu SS, Kumar R. 2021. Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences 3:100094 doi: 10.1016/j.crmicr.2021.100094 |
[82] |
Luciano AJ, Irineo TP, Rosalia Virginia OV, Feregrino-Perez AA, Hernandez AC, et al. 2017. Integrating plant nutrients and elicitors for production of secondary metabolites, sustainable crop production and human health: a review. International Journal of Agriculture and Biology 19:391−402 doi: 10.17957/ijab/15.0297 |
[83] |
Hayat Q, Hayat S, Irfan M, Ahmad A. 2010. Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany 68:14−25 doi: 10.1016/j.envexpbot.2009.08.005 |
[84] |
Złotek U, Michalak-Majewska M, Szymanowska U. 2016. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chemistry 213:1−7 doi: 10.1016/j.foodchem.2016.06.052 |
[85] |
Dos Santos C, Franco OL. 2023. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants 12:2226 doi: 10.3390/plants12112226 |
[86] |
Franzoni G, Cocetta G, Prinsi B, Ferrante A, Espen L. 2022. Biostimulants on crops: their impact under abiotic stress conditions. Horticulturae 8:189 doi: 10.3390/horticulturae8030189 |
[87] |
Sobuj N, Virjamo V, Zhang Y, Nybakken L, Julkunen-Tiitto R. 2018. Impacts of elevated temperature and CO2 concentration on growth and phenolics in the sexually dimorphic Populus tremula (L.). Environmental and Experimental Botany 146:34−44 doi: 10.1016/j.envexpbot.2017.08.003 |
[88] |
Becker C, Kläring HP. 2016. CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chemistry 199:736−45 doi: 10.1016/j.foodchem.2015.12.059 |
[89] |
Mendes de Rezende F, Pereira de Souza A, Silveira Buckeridge M, Maria Furlan C. 2015. Is guava phenolic metabolism influenced by elevated atmospheric CO2? Environmental Pollution 196:483−88 doi: 10.1016/j.envpol.2014.07.028 |
[90] |
Ghasemzadeh A, Jaafar HZE, Karimi E, Ashkani S. 2014. Changes in nutritional metabolites of young ginger (Zingiber officinale Roscoe) in response to elevated carbon dioxide. Molecules 19:16693−706 doi: 10.3390/molecules191016693 |
[91] |
Goufo P, Pereira J, Figueiredo N, Oliveira MBPP, Carranca C, et al. 2014. Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). Journal of Cereal Science 59:15−24 doi: 10.1016/j.jcs.2013.10.013 |
[92] |
Wu G, Chen FJ, Ge F, Xiao NW. 2011. Impacts of elevated CO2 on expression of plant defensive compounds in Bt-transgenic cotton in response to infestation by cotton bollworm. Agricultural and Forest Entomology 13:77−82 doi: 10.1111/j.1461-9563.2010.00508.x |
[93] |
Gao F, Zhu SR, Sun YC, Du L, Parajulee M, et al. 2008. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environmental Entomology 37:29−37 doi: 10.1603/0046-225X(2008)37[29:IEOECA]2.0.CO;2 |
[94] |
Sharma S, Walia S, Rathore S, Kumar P, Kumar R. 2020. Combined effect of elevated CO2 and temperature on growth, biomass and secondary metabolite of Hypericum perforatum L. in a western Himalayan region. Journal of Applied Research on Medicinal and Aromatic Plants 16:100239 doi: 10.1016/j.jarmap.2019.100239 |
[95] |
Thakur M, Bhattacharya S, Khosla PK, Puri S. 2019. Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12:1−12 doi: 10.1016/j.jarmap.2018.11.004 |
[96] |
Arena ME, Postemsky PD, Curvetto NR. 2017. Changes in the phenolic compounds and antioxidant capacity of Berberis microphylla G. Forst. berries in relation to light intensity and fertilization. Scientia Horticulturae 218:63−71 doi: 10.1016/j.scienta.2017.02.004 |
[97] |
Burney OT, Davis AS, Jacobs DF. 2012. Phenology of foliar and volatile terpenoid production for Thuja plicata families under differential nutrient availability. Environmental and Experimental Botany 77:44−52 doi: 10.1016/j.envexpbot.2011.11.002 |