[1] |
Airoldi CA, Davies B. 2012. Gene duplication and the evolution of plant MADS-box transcription factors. Journal of Genetics and Genomics 39:157−65 doi: 10.1016/j.jgg.2012.02.008 |
[2] |
Mondragón-Palomino M, Theissen G. 2011. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'. The Plant Journal 66:1008−19 doi: 10.1111/j.1365-313X.2011.04560.x |
[3] |
Yuan Z, Persson S, Zhang D. 2020. Molecular and genetic pathways for optimizing spikelet development and grain yield. aBIOTECH 1:276−92 doi: 10.1007/s42994-020-00026-x |
[4] |
Yoshida H. 2012. Is the lodicule a petal: molecular evidence? Plant Science 184:121−28 doi: 10.1016/j.plantsci.2011.12.016 |
[5] |
Hu Y, Liang W, Yin C, Yang X, Ping B, et al. 2015. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. Molecular Plant 8:1366−84 doi: 10.1016/j.molp.2015.04.009 |
[6] |
Li H, Liang W, Jia R, Yin C, Zong J, et al. 2010. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research 20:299−313 doi: 10.1038/cr.2009.143 |
[7] |
Hu Y, Wang L, Jia R, Liang W, Zhang X, et al. 2021. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. Journal of Experimental Botany 72:2434−49 doi: 10.1093/jxb/eraa588 |
[8] |
Yun D, Liang W, Dreni L, Yin C, Zhou Z, et al. 2013. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Molecular Plant 6:743−56 doi: 10.1093/mp/sst003 |
[9] |
Yao SG, Ohmori S, Kimizu M, Yoshida H. 2008. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant and Cell Physiology 49:853−57 doi: 10.1093/pcp/pcn050 |
[10] |
Li H, Liang W, Hu Y, Zhu L, Yin C, et al. 2011. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell 23:2536−52 doi: 10.1105/tpc.111.087262 |
[11] |
Li H, Liang W, Yin C, Zhu L, Zhang D. 2011. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiology 156:263−74 doi: 10.1104/pp.111.172080 |
[12] |
Yadav SR, Prasad K, Vijayraghavan U. 2007. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176:283−94 doi: 10.1534/genetics.107.071746 |
[13] |
Smaczniak C, Immink RGH, Muiño JM, Blanvillain R, Busscher M, et al. 2012. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proceedings of the National Academy of Sciences of the United States of America 109:1560−65 doi: 10.1073/pnas.1112871109 |