[1] |
Yu H, Qiu JF, Ma LJ, Hu YJ, Li P, et al. 2017. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food and Chemical Toxicology 108:375−91 doi: 10.1016/j.fct.2016.11.023 |
[2] |
Martinetti L, Ferrante A, Bassoli A, Borgonovo G, Tosca A, et al. 2012. Characterization of some qualitative traits in different perilla cultivars. Acta Horticulturae 939:301−8 doi: 10.17660/actahortic.2012.939.39 |
[3] |
Ahmed HM. 2018. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules 24(1):102 doi: 10.3390/molecules24010102 |
[4] |
Wu X, Dong S, Chen H, Guo M, Sun Z, et al. 2023. Perilla frutescens: A traditional medicine and food homologous plant. Chinese Herbal Medicines 15:369−75 doi: 10.1016/j.chmed.2023.03.002 |
[5] |
Mungmai L, Preedalikit W, Pintha K, Tantipaiboonwong P, Aunsri N. 2020. Collagenase and melanogenesis inhibitory effects of Perilla Frutescens pomace extract and its efficacy in topical cosmetic formulations. Cosmetics 7:69 doi: 10.3390/cosmetics7030069 |
[6] |
Erhunmwunsee F, Pan C, Yang K, Li Y, Liu M, et al. 2022. Recent development in biological activities and safety concerns of perillaldehyde from perilla plants: A review. Critical Reviews in Food Science and Nutrition 62:6328−40 doi: 10.1080/10408398.2021.1900060 |
[7] |
Ito M, Honda G, Sydara K. 2008. Perilla frutescens var. frutescens in northern Laos. Journal of Natural Medicines 62:251−58 doi: 10.1007/s11418-007-0213-0 |
[8] |
Baba M, Yamada KI, Ito M. 2020. Cloning and Expression of a Perilla frutescens cytochrome P450 enzyme catalyzing the hydroxylation of phenylpropenes. Plants 9:577 doi: 10.3390/plants9050577 |
[9] |
Michiho I, Mariko T, Gisho H. 1999. Chemical Composition of the Essential oil of Perilla frutescens. Natural Medicines 53:32−36 |
[10] |
Müller-Waldeck F, Sitzmann J, Schnitzler WH, Graßmann J. 2010. Determination of toxic perilla ketone, secondary plant metabolites and antioxidative capacity in five Perilla frutescens L. varieties. Food and Chemical Toxicology 48:264−70 doi: 10.1016/j.fct.2009.10.009 |
[11] |
Sato-Masumoto N, Ito M. 2014. Two types of alcohol dehydrogenase from Perilla can form citral and perillaldehyde. Phytochemistry 104:12−20 doi: 10.1016/j.phytochem.2014.04.019 |
[12] |
Masumoto N, Korin M, Ito M. 2010. Geraniol and linalool synthases from wild species of perilla. Phytochemistry 71:1068−75 doi: 10.1016/j.phytochem.2010.04.006 |
[13] |
Chen W, Viljoen AM. 2010. Geraniol — A review of a commercially important fragrance material. South African Journal of Botany 76:643−51 doi: 10.1016/j.sajb.2010.05.008 |
[14] |
Dudai N, Segey D, Haykin-Frenkel D, Eshel A. 2006. Genetic variation of phenolic compounds content, essential oil composition and anti oxidative activity in Israel-grown Mentha longifolia L. Acta Horticulturae 709:69−78 doi: 10.17660/actahortic.2006.709.8 |
[15] |
Lange BM, Srividya N. 2019. Enzymology of monoterpene functionalization in glandular trichomes. Journal of Experimental Botany 70:1095−108 doi: 10.1093/jxb/ery436 |
[16] |
Vranová E, Coman D, Gruissem W. 2013. Network Analysis of the MVA and MEP Pathways for Isoprenoid Synthesis. Annual Review of Plant Biology 64:665−700 doi: 10.1146/annurev-arplant-050312-120116 |
[17] |
Zebec Z, Wilkes J, Jervis AJ, Scrutton NS, Takano E, et al. 2016. Towards synthesis of monoterpenes and derivatives using synthetic biology. Current Opinion in Chemical Biology 34:37−43 doi: 10.1016/j.cbpa.2016.06.002 |
[18] |
Yuba A, Yazaki K, Tabata M, Honda G, Croteau R. 1996. cDNA cloning, characterization, and functional expression of 4S-(−)-limonene synthase from Perilla frutescens. Archives of Biochemistry and Biophysics 332:280−87 doi: 10.1006/abbi.1996.0343 |
[19] |
Mau CJD, Karp F, Ito M, Honda G, Croteau RB. 2010. A candidate cDNA clone for (−)-limonene-7-hydroxylase from Perilla frutescens. Phytochemistry 71:373−79 doi: 10.1016/j.phytochem.2009.12.002 |
[20] |
Fujiwara Y, Ito M. 2017. Molecular cloning and characterization of a Perilla frutescens cytochrome P450 enzyme that catalyzes the later steps of perillaldehyde biosynthesis. Phytochemistry 134:26−37 doi: 10.1016/j.phytochem.2016.11.009 |
[21] |
Zhou P, Shao Y, Jiang Z, Dang J, Qu C, et al. 2023. The revealing of a novel double bond reductase related to perilla ketone biosynthesis in Perilla frutescens. BMC Plant Biology 23:345 doi: 10.1186/s12870-023-04345-1 |
[22] |
Zhang Y, Shen Q, Leng L, Zhang D, Chen S, et al. 2021. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Nature Communications 12:5508 doi: 10.1038/s41467-021-25681-6 |
[23] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170 |
[24] |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21 doi: 10.1093/bioinformatics/bts635 |
[25] |
Srinivasan KA, Virdee SK, McArthur AG. 2020. Strandedness during cDNA synthesis, the stranded parameter in htseq-count and analysis of RNA-Seq data. Briefings in Functional Genomics 19:339−42 doi: 10.1093/bfgp/elaa010 |
[26] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
[27] |
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular biology and evolution 38:5825−29 doi: 10.1093/molbev/msab293 |
[28] |
Wu T, Hu E, Xu S, Chen M, Guo P, et al. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2:100141 doi: 10.1016/j.xinn.2021.100141 |
[29] |
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, et al. 2019. The Pfam protein families database in 2019. Nucleic Acids Research 47:D427−D432 doi: 10.1093/nar/gky995 |
[30] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547 doi: 10.1093/molbev/msy096 |
[31] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[32] |
Wang Y, Li J, Paterson AH. 2013. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458−60 doi: 10.1093/bioinformatics/btt150 |
[33] |
Zhang T, Song C, Song L, Shang Z, Yang S, et al. 2017. RNA sequencing and coexpression analysis reveal key genes involved in α-linolenic acid biosynthesis in Perilla frutescens seed. International Journal of Molecular Sciences 18:2433 doi: 10.3390/ijms18112433 |
[34] |
Wu D, Yang SM, Shang ZW, Xu J, Zhao DG, et al. 2021. Genome-wide analysis of the fatty acid desaturase gene family reveals the key role of PfFAD3 in α-linolenic acid biosynthesis in Perilla Seeds. Frontiers in Genetics 12:735862 doi: 10.3389/fgene.2021.735862 |
[35] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[36] |
Mahmoud SS, Croteau RB. 2003. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proceedings of the National Academy of Sciences of the United States of America 100:14481−86 doi: 10.1073/pnas.2436325100 |
[37] |
Parker MT, Zhong Y, Dai X, Wang S, Zhao P. 2014. Comparative genomic and transcriptomic analysis of terpene synthases in Arabidopsis and Medicago. IET Systems Biology 8:146−53 doi: 10.1049/iet-syb.2013.0032 |
[38] |
Zhou F, Pichersky E. 2020. The complete functional characterisation of the terpene synthase family in tomato. New Phytologist 226:1341−60 doi: 10.1111/nph.16431 |
[39] |
Chen Z, Vining KJ, Qi X, Yu X, Zheng Y, et al. 2021. Genome-wide analysis of terpene synthase gene family in Mentha longifolia and catalytic activity analysis of a single terpene synthase. Genes 12:518 doi: 10.3390/genes12040518 |
[40] |
Li J, Wang Y, Dong Y, Zhang W, Wang D, et al. 2021. The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Horticulture Research 8:53 doi: 10.1038/s41438-021-00490-6 |
[41] |
Tabata M. 2000. Genetics of monoterpene biosynthesis in Perilla plants. Plant Biotechnology 17:273−80 doi: 10.5511/plantbiotechnology.17.273 |
[42] |
Singh N, Singh B, Rai V, Sidhu S, Singh AK, et al. 2017. Evolutionary insights based on SNP haplotypes of red pericarp, grain size and starch synthase genes in wild and cultivated rice. Frontiers in Plant Science 8:972 doi: 10.3389/fpls.2017.00972 |
[43] |
Weeden NF, Lamb RC. 1985. Identification of Apple Cultivars by Isozyme Phenotypes. Journal of the American Society of Horticultural Science 110:509−15 doi: 10.21273/jashs.110.4.509 |
[44] |
Drew DP, Andersen TB, Sweetman C, Møller BL, Ford C, et al. 2015. Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene. Journal of Experimental Botany 67:799−808 doi: 10.1093/jxb/erv491 |