[1]

Jach ME, Serefko A, Ziaja M, Kieliszek M. 2022. Yeast Protein as an Easily Accessible Food Source. Metabolites 12(1):63

doi: 10.3390/metabo12010063
[2]

Maicas S. 2020. The Role of Yeasts in Fermentation Processes. Microorganisms 8(8):1142

doi: 10.3390/microorganisms8081142
[3]

Prins RC, Billerbeck S. 2021. A buffered media system for yeast batch culture growth. BMC Microbiology 21:127

doi: 10.1186/s12866-021-02191-5
[4]

Evanovich E, de Souza Mendonça Mattos PJ, Guerreiro JF. 2019. Comparative genomic analysis of Lactobacillus plantarum: an overview. International Journal of Genomics 2019:4973214

doi: 10.1155/2019/4973214
[5]

Brice C, Cubillos FA, Dequin S, Camarasa C, Martínez C. 2018. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLOS ONE 13(2):e0192383

doi: 10.1371/journal.pone.0192383
[6]

Rollero S, Bloem A, Brand J, Ortiz-Julien A, Camarasa C, et al. 2021. Nitrogen metabolism in three non-conventional wine yeast species: A tool to modulate wine aroma profiles. Food Micro biology 94:103650

doi: 10.1016/j.fm.2020.103650
[7]

Roca-Mesa H, Delgado-Yuste E, Mas A, Torija MJ, Beltran G. 2022. Importance of micronutrients and organic nitrogen in fermentations with Torulaspora delbrueckii and Saccharomyces cerevisiae. International Journal of Food Microbiology 381:109915

doi: 10.1016/j.ijfoodmicro.2022.109915
[8]

Coulibaly WH, Boli ZBIA, Bouatenin KMJP, M'bra AMA, Kouhounde SHS, et al. 2022. Identification of non-Saccharomyes yeast strains isolated from local traditional sorghum beer produced in Abidjan district (Côte d'Ivoire) and their ability to carry out alcoholic fermentation. BMC Microbiology 22:165

doi: 10.1186/s12866-022-02560-8
[9]

Lasanta C, Durán-Guerrero E, Díaz AB, Castro R. 2021. Influence of fermentation temperature and yeast type on the chemical and sensory profile of handcrafted beers. Journal of the Science of Food and Agriculture 101(3):1174−81

doi: 10.1002/jsfa.10729
[10]

Endres F, Prowald A, Fittschen UEA, Hampel S, Oppermann S, et al. 2022. Constant temperature mashing at 72 °C for the production of beers with a reduced alcohol content in micro brewing systems. European Food Research and Technology 248(6):1457−68

doi: 10.1007/s00217-022-03968-2
[11]

Cadenas R, Caballero I, Nimubona D, Blanco CA. 2021. Brewing with Starchy Adjuncts: Its Influence on the Sensory and Nutritional Properties of Beer. Foods 10(8):1726

doi: 10.3390/foods10081726
[12]

Hossain MS, Islam MN, Rahman MM, Mostofa MG, Khan MAR. 2022. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research 8:100300

doi: 10.1016/j.jafr.2022.100300
[13]

Ademiluyi FT, Mepba HD. 2013. Yield and properties of ethanol biofuel produced from different whole cassava flours. ISRN Biotechnology 2013:916481

doi: 10.5402/2013/916481
[14]

Tsegay ZT. 2020. Total titratable acidity and organic acids of wines produced from cactus pear (Opuntia-ficus-indica) fruit and Lantana camara (L. Camara) fruit blended fermentation process employed response surface optimization. Food Science & Nutrition 8(8):4449−62

doi: 10.1002/fsn3.1745
[15]

Abedi E, Hashemi SMB. 2020. Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon 6(10):e04974

doi: 10.1016/j.heliyon.2020.e04974
[16]

Sasmal S, Roy Chowdhury S, Podder D, Haldar D. 2019. Urea-Appended Amino Acid To Vitalize Yeast Growth, Enhance Fermentation, and Promote Ethanol Production. ACS Omega 4(8):13172−79

doi: 10.1021/acsomega.9b01260
[17]

Managa MG, Akinola SA, Remize F, Garcia C, Sivakumar D. 2021. Physicochemical parameters and bioaccessibility of lactic acid bacteria fermented chayote leaf (Sechium edule) and pineapple (Ananas comosus) smoothies. Frontiers in Nutrition 8:649189

doi: 10.3389/fnut.2021.649189
[18]

Roca-Mesa H, Sendra S, Mas A, Beltran G, Torija MJ. 2020. Nitrogen preferences during alcoholic fermentation of different non-Saccharomyces yeasts of oenological interest. Microorganisms 8(2):157

doi: 10.3390/microorganisms8020157
[19]

Sriputorn B, Laopaiboon P, Phukoetphim N, Polsokchuak N, Butkun K, et al. 2020. Enhancement of ethanol production efficiency in repeated-batch fermentation from sweet sorghum stem juice: Effect of initial sugar, nitrogen and aeration. Electronic Journal of Biotechnology 46:55−64

doi: 10.1016/j.ejbt.2020.06.001
[20]

Fadel M, Abdel-Naser AZ, Makawy M, Hsona MS, Abdel-Aziz AM. 2014. Recycling of vinasse in ethanol fermentation and application in Egyptian distillery factories. African Journal of Biotech nology 13(47):4390−98

doi: 10.5897/AJB2014.14083
[21]

Ferreira I, Guido L. 2018. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 4(2):23

doi: 10.3390/fermentation4020023
[22]

Pereira N, Alegria C, Aleixo C, Martins P, Gonçalves EM, Abreu M. 2021. Selection of autochthonous LAB strains of unripe green tomato towards the production of highly nutritious lacto-fermented ingredients. Foods 10(12):2916

doi: 10.3390/foods10122916
[23]

Stewart G. 2018. Yeast flocculation—sedimentation and flotation. Fermentation 4(2):28

doi: 10.3390/fermentation4020028
[24]

Adejuyitan Otunola JA, Akande ET, Bolarinwa EA, Oladokun IF. 2009. Some physicochemical properties of flour obtained from fermentation of tigernut (Cyperus esculentus) sourced from a market in Ogbomoso, Nigeria. African Journal of Food Science 3(2):51−55

[25]

Ryu D, Choi B, Kim E, Park S, Paeng H, et al. 2015. Determination of Ethyl Carbamate in Alcoholic Beverages and Fermented Foods Sold in Korea. Toxicological Research 31(3):289−97

doi: 10.5487/TR.2015.31.3.289
[26]

Phong HX, Klanrit P, Dung NTP, Thanonkeo S, Yamada M, et al. 2022. High-temperature ethanol fermentation from pineapple waste hydrolysate and gene expression analysis of thermotolerant yeast Saccharomyces cerevisiae. Scientific Reports 12:13965

doi: 10.1038/s41598-022-18212-w
[27]

Bokulich NA, Bamforth CW. 2013. The microbiology of malting and brewing. Microbiology and Molecular Biology Reviews 77(2):157−72

doi: 10.1128/MMBR.00060-12
[28]

Malina C, Yu R, Björkeroth J, Kerkhoven EJ, Nielsen J. 2021. Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Proceedings of the National Academy of Sciences of the United States of America 118(51):e2112836118

doi: 10.1073/pnas.2112836118
[29]

Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. 2020. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6(4):106

doi: 10.3390/fermentation6040106
[30]

Sawadogo-Lingani H, Owusu-Kwarteng J, Glover R, Diawara B, Jakobsen M, et al. 2021. Sustainable production of African traditional beers with focus on Dolo, a west African sorghum-based alcoholic beverage. Frontiers in Sustainable Food Systems 5:672410

doi: 10.3389/fsufs.2021.672410
[31]

Stewart GG. 2017. The production of secondary metabolites with flavour potential during brewing and distilling wort fermentations. Fermentation 3(4):63

doi: 10.3390/fermentation3040063
[32]

Liptáková D, Matejčeková Z, Valík L. 2017. Lactic acid bacteria and fermentation of cereals and pseudocereals. In Fermentation Processes, ed. Jozala AF. InTech Open. DOI: 10.5772/65459

[33]

Manan MA, Webb C. 2020. Newly designed multi-stacked circular tray solid-state bioreactor: analysis of a distributed parameter gas balance during solid-state fermentation with influence of variable initial moisture content arrangements. Bioresources and Bioprocessing 7:16

doi: 10.1186/s40643-020-00307-9
[34]

Adebo OA. 2020. African Sorghum-Based Fermented Foods: Past. Current and Future Prospects. Nutrients 12(4):1111

doi: 10.3390/nu12041111
[35]

Xiang H, Sun-Waterhouse D, Waterhouse GIN, Cui C, Ruan Z. 2019. Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness 8(3):203−43

doi: 10.1016/j.fshw.2019.08.003
[36]

Wang N, Xiong Y, Wang X, Guo L, Lin Y, et al. 2022. Effects of lactobacillus plantarum on fermentation quality and anti-nutritional factors of paper mulberry silage. Fermentation 8(4):144

doi: 10.3390/fermentation8040144
[37]

Forsido SF, Hordofa AA, Ayelign A, Belachew T, Hensel O. 2020. Effects of fermentation and malt addition on the physicochemical properties of cereal based complementary foods in Ethiopia. Heliyon 6(7):e04606

doi: 10.1016/j.heliyon.2020.e04606
[38]

Hawashi M, Widjaja T, Gunawan S. 2020. Solid-state fermentation of cassava products for degradation of anti-nutritional value and enrichment of nutritional value. In New Advances on Fermentation Processes, ed. Martínez-Espinosa RM. Intech Open. DOI: 10.5772/intechopen.87160