[1]

Valladares F. 1999. Architecture, ecology and evolution of plant crowns. Handbook of Functional Plant Ecology 121−94

[2]

Niinemets Ü. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research 25:693−714

doi: 10.1007/s11284-010-0712-4
[3]

Thompson ID, Okabe K, Tylianakis JM, Kumar P, Brockerhoff EG, et al. 2011. Forest biodiversity and the delivery of ecosystem goods and services: translating science into policy. BioScience 61:972−81

doi: 10.1525/bio.2011.61.12.7
[4]

Zieschank V, Junker RR. 2023. Digital whole-community phenotyping: tracking morphological and physiological responses of plant communities to environmental changes in the field. Frontiers in Plant Science 14:1141554

doi: 10.3389/fpls.2023.1141554
[5]

Yang J, Swenson NG. 2023. Height and crown allometries and their relationship with functional traits: an example from a subtropical wet forest. Ecology and Evolution 13:e9804

doi: 10.1002/ece3.9804
[6]

Estopa RA, Paludeto JGZ, Müller BSF, de Oliveira RA, Azevedo CF, et al. 2023. Genomic prediction of growth and wood quality traits in Eucalyptus benthamii using different genomic models and variable SNP genotyping density. New Forests 54:343−62

doi: 10.1007/s11056-022-09924-y
[7]

Tao S, Xie Y, Luo J, Wang J, Zhang L, et al. 2023. Superior clone selection in a Eucalyptus trial using forest phenotyping technology via UAV-based DAP point clouds and multispectral images. Remote Sensing 15:899

doi: 10.3390/rs15040899
[8]

Bian L, Zhang H, Ge Y, Čepl J, Stejskal J, et al. 2022. Closing the gap between phenotyping and genotyping: review of advanced, image-based phenotyping technologies in forestry. Annals of Forest Science 79:22

doi: 10.1186/s13595-022-01143-x
[9]

Wei M, Li H, Wang Q, Liu R, Yang L, et al. 2023. Genome-wide identification and expression profiling of B3 transcription factor genes in Populus alba × Populus glandulosa. Frontiers in Plant Science 14:1193065

doi: 10.3389/fpls.2023.1193065
[10]

Ray D, Berlin M, Alia R, Sanchez L, Hynynen J, et al. 2022. Transformative changes in tree breeding for resilient forest restoration. Frontiers in Forests and Global Change 5:1005761

doi: 10.3389/ffgc.2022.1005761
[11]

Thapa S, Zhu F, Walia H, Yu H, Ge Y. 2018. A novel LiDAR-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum. Sensors 18:1187

doi: 10.3390/s18041187
[12]

Alani AM, Giannakis I, Zou L, Lantini L, Tosti F. 2020. Reverse-time migration for evaluating the internal structure of tree-trunks using ground-penetrating radar. NDT & E International 115:102294

doi: 10.1016/j.ndteint.2020.102294
[13]

Li H, Yin S, Wang L, Xu N, Liu L. 2022. Transcription factor PagLBD21 functions as a repressor of secondary xylem development in Populus. Forestry Research 2:19

doi: 10.48130/fr-2022-0019
[14]

Mori AS, Suzuki KF, Hori M, Kadoya T, Okano K, et al. 2023. Perspective: sustainability challenges, opportunities and solutions for long-term ecosystem observations. Philosophical Transactions of the Royal Society B 378:20220192

doi: 10.1098/rstb.2022.0192
[15]

Ehrlich-Sommer F, Hoenigsberger F, Gollob C, Nothdurft A, Stampfer K, et al. 2024. Sensors for Digital Transformation in Smart Forestry. Sensors 24:798

doi: 10.3390/s24030798
[16]

Brockerhoff EG, Corley JC, Jactel H, Miller DR, Rabaglia RJ, et al. 2023. Monitoring and surveillance of forest insects. In Forest Entomology and Pathology, eds Allison D, Paine J, Slippers TD, Wingfield B, Entomology MJ. Cham: Springer International Publishing pp. 669−705. https://doi.org/10.1007/978-3-031-11553-0_19

[17]

Ge Y, Atefi A, Zhang H, Miao C, Ramamurthy RK, et al. 2019. High-throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: a case study with a maize diversity panel. Plant Methods 15:66

doi: 10.1186/s13007-019-0450-8
[18]

Iglhaut J, Cabo C, Puliti S, Piermattei L, O'Connor J, et al. 2019. Structure from motion photogrammetry in forestry: a review. Current Forestry Reports 5:155−68

doi: 10.1007/s40725-019-00094-3
[19]

Wallace L, Lucieer A, Malenovský Z, Turner D, Vopěnka P. 2016. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7:62

doi: 10.3390/f7030062
[20]

Guimarães N, Pádua L, Marques P, Silva N, Peres E, et al. 2020. Forestry remote sensing from unmanned aerial vehicles: a review focusing on the data, processing and potentialities. Remote Sensing 12:1046

doi: 10.3390/rs12061046
[21]

Quan M, Liu X, Du Q, Xiao L, Lu W, et al. 2021. Genome-wide association studies reveal the coordinated regulatory networks underlying photosynthesis and wood formation in Populus. Journal of Experimental Botany 72:5372−89

doi: 10.1093/jxb/erab122
[22]

Ashwath MN, Lavale SA, Santhoshkumar AV, Mohapatra SR, Bhardwaj A, et al. 2023. Genome-wide association studies: an intuitive solution for SNP identification and gene mapping in trees. Functional & Integrative Genomics 23:297

doi: 10.1007/s10142-023-01224-8
[23]

Yang A, Ding X, Feng Y, Zhao R, Ye J. 2023. Genetic diversity and genome-wide association analysis of pine wood nematode populations in different regions of China. Frontiers in Plant Science 14:1183772

doi: 10.3389/fpls.2023.1183772
[24]

Cappa EP, Chen C, Klutsch JG, Sebastian-Azcona J, Ratcliffe B, et al. 2022. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine. BMC Genomics 23:536

doi: 10.1186/s12864-022-08747-7
[25]

Li Y, Yang X, Tong L, Wang L, Xue L, et al. 2023. Phenomic selection in slash pine multi-temporally using UAV-multispectral imagery. Frontiers in Plant Science 14:1156430

doi: 10.3389/fpls.2023.1156430
[26]

Moreira FF, Oliveira HR, Volenec JJ, Rainey KM, Brito LF. 2020. Integrating high-throughput phenotyping and statistical genomic methods to genetically improve longitudinal traits in crops. Frontiers in Plant Science 11:681

doi: 10.3389/fpls.2020.00681
[27]

White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, et al. 2012. Field-based phenomics for plant genetics research. Field Crops Research 133:101−12

doi: 10.1016/j.fcr.2012.04.003
[28]

Diao S, Ding X, Luan Q, Chen Z, Wu H, et al. 2024. Development of 51 K liquid-phased probe array for Loblolly and Slash pines and its application to GWAS of Slash pine breeding population. Industrial Crops and Products 216:118777

doi: 10.1016/j.indcrop.2024.118777
[29]

Song Z, Tomasetto F, Niu X, Yan W, Jiang J, et al. 2022. Enabling breeding selection for biomass in slash pine Using UAV-based imaging. Plant Phenomics 2022:9783785

doi: 10.34133/2022/978378
[30]

Niu X, Song Z, Xu C, Wu H, Luan Q, et al. 2023. Prediction of needle physiological traits using UAV imagery for breeding selection of slash pine. Plant Phenomics 5:0028

doi: 10.34133/plantphenomics.0028
[31]

Tao X, Li Y, Yan W, Wang M, Tan Z, et al. 2021. Heritable variation in tree growth and needle vegetation indices of slash pine (Pinus elliottii) using unmanned aerial vehicles (UAVs). Industrial Crops and Products 173:114073

doi: 10.1016/j.indcrop.2021.114073
[32]

Zhang W, Qi J, Wan P, Wang H, Xie D, et al. 2016. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sensing 8:501

doi: 10.3390/rs8060501
[33]

Covarrubias-Pazaran G. 2016. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One 11:e0156744

doi: 10.1371/journal.pone.0156744
[34]

Wickham H. 2016. ggplot2: elegant graphics for data analysis. Cham: Springer. xvi, 260 pp. https://doi.org/10.1007/978-3-319-24277-4

[35]

van Rossum BJ, Kruijer W, van Eeuwijk F, Boer M, Malosetti M, et al. 2020. Package 'statgenGWAS'. R package version 1

[36]

Yang J, Lee SH, Wray NR, Goddard ME, Visscher PM. 2016. GCTA-GREML accounts for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. Proceedings of the National Academy of Sciences of the United States of America 113:E4579−E4580

doi: 10.1073/pnas.160274311
[37]

Yin L. 2023. CMplot: circle manhattan plot. R package version 4.4.1. https://CRAN.R-project.org/package=CMplot

[38]

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80−92

doi: 10.4161/fly.19695
[39]

Reynolds M, Chapman S, Crespo-Herrera L, Molero G, Mondal S, et al. 2020. Breeder friendly phenotyping. Plant Science 295:110396

doi: 10.1016/j.plantsci.2019.110396
[40]

Strauss S, Lande R, Namkoong G. 1992. Limitations of molecular-marker-aided selection in forest tree breeding. Canadian Journal of Forest Research 22:1050−61

doi: 10.1139/x92-140
[41]

Iwata H, Hayashi T, Tsumura Y. 2011. Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genetics & Genomes 7:747−58

doi: 10.1007/s11295-011-0371-9
[42]

Torresan C, Berton A, Carotenuto F, Di Gennaro SF, Gioli B, et al. 2017. Forestry applications of UAVs in Europe: a review. International Journal of Remote Sensing 38:2427−47

doi: 10.1080/01431161.2016.1252477
[43]

Liu Q, Li S, Li Z, Fu L, Hu K. 2017. Review on the applications of UAV-based LiDAR and photogrammetry in forestry. Scientia Silvae Sinicae 53:134−48

doi: 10.11707/j.1001-7488.20170714
[44]

Liao L, Cao L, Xie Y, Luo J, Wang G. 2022. Phenotypic traits extraction and genetic characteristics assessment of Eucalyptus Trials based on UAV-borne LiDAR and RGB images. Remote Sensing 14:765

doi: 10.3390/rs14030765
[45]

Liu G, Wang J, Dong P, Chen Y, Liu Z. 2018. Estimating individual tree height and diameter at breast height (DBH) from terrestrial laser scanning (TLS) data at plot level. Forests 9:398

doi: 10.3390/f9070398
[46]

Thiel C, Schmullius C. 2017. Comparison of UAV photograph-based and airborne lidar-based point clouds over forest from a forestry application perspective. International Journal of Remote Sensing 38:2411−26

doi: 10.1080/01431161.2016.1225181
[47]

Ghanbari Parmehr E, Amati M. 2021. Individual tree canopy parameters estimation using UAV-based photogrammetric and LiDAR point clouds in an urban park. Remote Sensing 13:2062

doi: 10.3390/rs13112062
[48]

Dandois JP, Ellis EC. 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing of Environment 136:259−76

doi: 10.1016/j.rse.2013.04.005
[49]

Coble DW, Lee YJ. 2011. A mixed-effects height—diameter model for individual loblolly and slash pine trees in east Texas. Southern Journal of Applied Forestry 35:12−17

doi: 10.1093/sjaf/35.1.12
[50]

Beaulieu J, Lenz P, Bousquet J. 2022. Metadata analysis indicates biased estimation of genetic parameters and gains using conventional pedigree information instead of genomic-based approaches in tree breeding. Scientific Reports 12:3933

doi: 10.1038/s41598-022-06681-y
[51]

Soleimani VD, Baum BR, Johnson DA. 2007. Analysis of genetic diversity in barley cultivars reveals incongruence between S-SAP, SNP and pedigree data. Genetic Resources and Crop Evolution 54:83−97

doi: 10.1007/s10722-005-1886-4
[52]

Berlin M, Jansson G, Högberg KA, Helmersson A. 2019. Analysis of non-additive genetic effects in Norway spruce. Tree Genetics & Genomes 15:42

doi: 10.1007/s11295-019-1350-9
[53]

Berguson WE, McMahon BG, Riemenschneider DE. 2017. Additive and non-additive genetic variances for tree growth in several hybrid poplar populations and implications regarding breeding strategy. Silvae Genetica 66:33−39

doi: 10.1515/sg-2017-0005
[54]

Xia C, Amador C, Huffman J, Trochet H, Campbell A, et al. 2016. Pedigree-and SNP-associated genetics and recent environment are the major contributors to anthropometric and cardiometabolic trait variation. PLoS Genetics 12:e1005804

doi: 10.1371/journal.pgen.1005804
[55]

Misztal I, Lourenco D, Legarra A. 2020. Current status of genomic evaluation. Journal of Animal Science 98:skaa101

doi: 10.1093/jas/skaa101
[56]

de la Cruz J, Kressler D, Linder P. 1999. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends in Biochemical Sciences 24:192−98

doi: 10.1016/S0968-0004(99)01376-6
[57]

Kanai M, Hayashi M, Kondo M, Nishimura M. 2013. The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth. Plant and Cell Physiology 54:1431−40

doi: 10.1093/pcp/pct091
[58]

Shimizu KK, Ito T, Ishiguro S, Okada K. 2008. MAA3 (MAGATAMA3) helicase gene is required for female gametophyte development and pollen tube guidance in Arabidopsis thaliana. Plant and Cell Physiology 49:1478−83

doi: 10.1093/pcp/pcn130
[59]

Nishimura K, Ashida H, Ogawa T, Yokota A. 2010. A DEAD box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA. The Plant Journal 63:766−77

doi: 10.1111/j.1365-313X.2010.04276.x
[60]

Xu X, Chen X, Shen X, Chen R, Zhu C, et al. 2021. Genome-wide identification and characterization of DEAD-box helicase family associated with early somatic embryogenesis in Dimocarpus longan Lour. Journal of Plant Physiology 258–259:153364

doi: 10.1016/j.jplph.2021.153364
[61]

Zhang L, Liu P, Wu J, Qiao L, Zhao G, et al. 2020. Identification of a novel ERF gene, TaERF8, associated with plant height and yield in wheat. BMC Plant Biology 20:263

doi: 10.1186/s12870-020-02473-6
[62]

Jofuku KD, Den Boer BG, Van Montagu M, Okamuro JK. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell 6:1211−25

doi: 10.1105/tpc.6.9.1211
[63]

Salvi S, Sponza G, Morgante M, Tomes D, Niu X, et al. 2007. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proceedings of the National Academy of Sciences of the United States of America 104:11376−81

doi: 10.1073/pnas.0704145104
[64]

Stone SL, Callis J. 2007. Ubiquitin ligases mediate growth and development by promoting protein death. Current Opinion in Plant Biology 10:624−32

doi: 10.1016/j.pbi.2007.07.010
[65]

Galstyan A, Bou-Torrent J, Roig-Villanova I, Martínez-García JF. 2012. A dual mechanism controls nuclear localization in the atypical basic-helix-loop-helix protein PAR1 of Arabidopsis thaliana. Molecular Plant 5:669−77

doi: 10.1093/mp/sss006
[66]

Sun J, Zhang X, Fu C, Ahmad N, Zhao C, et al. 2023. Genome-wide identification and expression analysis of GA20ox and GA3ox genes during pod development in peanut. PeerJ 11:e16279

doi: 10.7717/peerj.16279
[67]

Chen T, Cui P, Chen H, Ali S, Zhang S, Xiong L. 2013. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genetics 9:e1003875

doi: 10.1371/journal.pgen.1003875
[68]

Zhang J, Zhang F, Tian L, Ding Y, Qi J, et al. 2022. Molecular mapping of quantitative trait loci for 3 husk traits using genotyping by sequencing in maize (Zea mays L.). G3 Genes|Genomes| Genetics 12:jkac198

doi: 10.1093/g3journal/jkac198
[69]

Karamanos Y. 2013. Endo-N-acetyl-β-D-glucosaminidases and peptide-N4-(N-acetyl-β-D-glucosaminyl) asparagine amidases: more than just tools. Advances in Biochemistry 1:81−99

doi: 10.11648/j.ab.20130105.12
[70]

Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish SVK, et al. 2018. Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science 9:1578

doi: 10.3389/fpls.2018.01578
[71]

Griffiths S, Dunford RP, Coupland G, Laurie DA. 2003. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiology 131:1855−67

doi: 10.1104/pp.102.016188
[72]

Wang C, Huang W, Ying Y, Li S, Secco D, et al. 2012. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytologist 196:139−48

doi: 10.1111/j.1469-8137.2012.04227.x