[1] |
World Health Organization (WHO). 2023. One Health - Technical Advisory Group First meeting 31 Oct-1 Nov 2022, Concept note. www.who.int/europe/initiatives/one-health (Accessed March 14, 2024 |
[2] |
Petroulakis N, Mattsson MO, Chatziadam P, Simko M, Gavrielides A, et al. 2023. NextGEM: next-generation integrated sensing and analytical system for monitoring and assessing radiofrequency electromagnetic field exposure and health. International Journal of Environmental Research and Public Health 20:6085 doi: 10.3390/ijerph20126085 |
[3] |
Shah SAA, Basir A, Lim YH, Yoo H. 2023. A novel efficient wirelessly powered biotelemetric endovascular aortic stent antenna system. IEEE Transactions on Antennas and Propagation 71(9):7132−45 doi: 10.1109/TAP.2023.3291419 |
[4] |
Cirimele V, Freschi F, Giaccone L, Pichon L, Repetto M. 2017. Human exposure assessment in dynamic inductive power transfer for automotive applications. IEEE Transactions on Magnetics 53(6):5000304 doi: 10.1109/TMAG.2017.2658955 |
[5] |
Tran NT, Jokic L, Keller J, Geier JU, Kaldenhoff R. 2023. Impacts of radio-frequency electromagnetic field (RF-EMF) on lettuce (Lactuca sativa)-evidence for RF-EMF interference with plant stress responses. Plants 12(5):1082 doi: 10.3390/plants12051082 |
[6] |
Sivani S, Sudarsanam D. 2012. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem – a review. Biology and medicine 4(4):202−16 |
[7] |
Liu Z, Li T, Li S, Mi CC. 2024. Advancements and challenges in wireless power transfer: a comprehensive review. Nexus 1:100014 doi: 10.1016/j.ynexs.2024.100014 |
[8] |
Tesla N. 1900. U.S., System of Transmission of Electrical Energy. Patents 645576. |
[9] |
Tesla N. 1904. The transmission of electrical energy without wires. Electrical World and Engineer 1:429−31 |
[10] |
Tesla N. 1914. U.S., Apparatus for Transmitting Electrical Energy. Patents 1119732. |
[11] |
Brown WC. 1961. A survey of the elements of power transmission by microwave beam. IRE National Convention Record 9(3):93−106 |
[12] |
Brown WC. 1984. The history of power transmission by radio waves. IEEE Transactions on Microwave Theory and Techniques 32:1230−42 doi: 10.1109/TMTT.1984.1132833 |
[13] |
Glaser PE. 1968. Power from the Sun: its future. Science 162:857−61 doi: 10.1126/science.162.3856.857 |
[14] |
Brown WC. 1973. Satellite power stations: a new source of energy? IEEE Spectrum 10:38−47 doi: 10.1109/MSPEC.1973.5216798 |
[15] |
Covic GA, Boys JT. 2013. Modern trends in inductive power transfer for transportation applications. IEEE Journal of Emerging and Selected Topics in Power Electronics 1:28−41 doi: 10.1109/JESTPE.2013.2264473 |
[16] |
Nutwong S, Sangswang A, Naetiladdanon S, Mujjalinvimut E. 2018. A novel output power control of wireless powering kitchen appliance system with free-positioning feature. Energies 11(7):1671 doi: 10.3390/en11071671 |
[17] |
Shah IA, Zada M, Shah SAA, Basir A, Yoo H. 2024. Flexible metasurface-coupled efficient wireless power transfer system for implantable devices. IEEE Transactions on Microwave Theory and Techniques 72:2534−47 doi: 10.1109/TMTT.2023.3319050 |
[18] |
Patil D, McDonough MK, Miller JM, Fahimi B, Balsara PT. 2018. Wireless power transfer for vehicular applications: overview and challenges. IEEE Transactions on Transportation Electrification 4:3−37 doi: 10.1109/TTE.2017.2780627 |
[19] |
Kod M, Zhou J, Huang Y, Hussein M, Sohrab AP, et al. 2021. An approach to improve the misalignment and wireless power transfer into biomedical implants using meandered wearable loop antenna. Wireless Power Transfer 8:6621899 doi: 10.1155/2021/6621899 |
[20] |
Zhou J, Guo K, Chen Z, Sun H, Hu S. 2020. Design considerations for contact-less underwater power delivery: a systematic review and critical analysis. Wireless Power Transfer 7:76−85 doi: 10.1017/wpt.2020.3 |
[21] |
Hutchinson L, Waterson B, Anvari B, Naberezhnykh D. 2019. Potential of wireless power transfer for dynamic charging of electric vehicles. IET Intelligent Transport Systems 13:3−12 doi: 10.1049/iet-its.2018.5221 |
[22] |
Ibrahim M, Pichon L, Bernard L, Razek A, Houivet J, et al. 2015. Advanced modeling of a 2-kW series–series resonating inductive charger for real electric vehicle. IEEE Transactions on Vehicular Technology 64:421−30 doi: 10.1109/TVT.2014.2325614 |
[23] |
Cirimele V, Diana M, Freschi F, Mitolo M. 2018. Inductive power transfer for automotive applications: state-of-the-art and future trends. IEEE Transactions on Industry Applications 54:4069−79 doi: 10.1109/TIA.2018.2836098 |
[24] |
Razek A. 2021. Review of contactless energy transfer concept applied to inductive power transfer systems in electric vehicles. Applied Sciences 11:3221 doi: 10.3390/app11073221 |
[25] |
Ibrahim M, Bernard L, Pichon L, Labouré E, Razek A, et al. 2016. Inductive charger for electric vehicle: advanced modeling and interoperability analysis. IEEE Transactions on Power Electronics 31:8096−114 doi: 10.1109/TPEL.2016.2516344 |
[26] |
Cirimele V, Diana M, Bellotti F, Berta R, El Sayed N, et al. 2020. The fabric ICT platform for managing wireless dynamic charging road lanes. IEEE Transactions on Vehicular Technology 69:2501−12 doi: 10.1109/TVT.2020.2968211 |
[27] |
Trevisan R, Costanzo A. 2014. State-of-the-art of contactless energy transfer (CET) systems: design rules and applications. Wireless Power Transfer 1:10−20 doi: 10.1017/wpt.2014.2 |
[28] |
Wang CS, Stielau OH, Covic GA. 2005. Design considerations for a contactless electric vehicle battery charger. IEEE Transactions on Industrial Electronics 52:1308−14 doi: 10.1109/TIE.2005.855672 |
[29] |
Russer JA, Dionigi M, Mongiardo M, Russer P. 2013. A moving field inductive power transfer system for electric vehicles. 2013 European Microwave Conference, Nuremberg, Germany, 6−10 October 2013. USA: IEEE. pp. 519−22. DOI: 10.23919/EuMC.2013.6686706 |
[30] |
Rizzoli V, Costanzo A, Masotti D, Donzelli F. 2010. Integration of numerical and field-theoretical techniques in the design of single- and multi-band rectennas for micro-power generation. International Journal of Microwave and Wireless Technologies 2:293−303 doi: 10.1017/s1759078710000553 |
[31] |
Costanzo A, Romani A, Masotti D, Arbizzani N, Rizzoli V. 2012. RF/baseband co-design of switching receivers for multiband microwave energy harvesting. Sensors and Actuators A: Physical 179:158−68 doi: 10.1016/j.sna.2012.02.005 |
[32] |
Ohira T. 2013. Via-wheel power transfer to vehicles in motion. 2013 IEEE Wireless Power Transfer (WPT), Perugia, Italy, 15−16 May 2013. USA: IEEE. pp. 242−46. DOI: 10.1109/WPT.2013.6556928 |
[33] |
Hirai J, Kim TW, Kawamura A. 2000. Wireless transmission of power and information and information for cableless linear motor drive. IEEE Transactions on Power Electronics 15:21−27 doi: 10.1109/63.817358 |
[34] |
Esser A, Skudelny HC. 1991. A new approach to power supplies for robots. IEEE Transactions on Industry Applications 27:872−75 doi: 10.1109/28.90341 |
[35] |
Reinhard M, Spindler C, Schuer T, Birk V, Denk J. 2011. New approaches for contactless power transmission systems integrated in PM motor drives transferring electrical energy to rotating loads. Proceedings of the 2011 14 th European Conference on Power Electronics and Applications, Birmingham, UK, 2011. USA: IEEE. pp. 1−10. https://ieeexplore.ieee.org/document/6020171 |
[36] |
Sample AP, Waters BH, Wisdom ST, Smith JR. 2013. Enabling seamless wireless power delivery in dynamic environments. Proceedings of the IEEE 101(6):1343−58 doi: 10.1109/JPROC.2013.2252453 |
[37] |
Wu J, Li Y, Dai X, Gao R, He M. 2024. A dynamic power transfer route construction and optimization method considering random node distribution for wireless power transfer network. IEEE Transactions on Power Electronics 39:4858−69 doi: 10.1109/TPEL.2023.3348103 |
[38] |
Zhang W, Mi CC. 2016. Compensation topologies of high-power wireless power transfer systems. IEEE Transactions on Vehicular Technology 65:4768−78 doi: 10.1109/TVT.2015.2454292 |
[39] |
Liu M, Fu M, Ma C. 2016. Parameter design for a 6.78-MHz wireless power transfer system based on analytical derivation of class E current-driven rectifier. IEEE Transactions on Power Electronics 31:4280−91 doi: 10.1109/TPEL.2015.2472565 |
[40] |
Qian L, Cui K, Xia H, Shao H, Wang J, et al. 2022. An inductive power transfer system for powering wireless sensor nodes in structural health monitoring applications. IEEE Transactions on Microwave Theory and Techniques 70:3732−40 doi: 10.1109/TMTT.2022.3174924 |
[41] |
Li S, Yu X, Yuan Y, Lu S, Li T. 2023. A novel high-voltage power supply with MHz WPT techniques: achieving high-efficiency, high-isolation, and high-power-density. IEEE Transactions on Power Electronics 38(12):14794−805 doi: 10.1109/TPEL.2023.3305054 |
[42] |
Kouhalvandi L, Ozoguz S, Koohestani M. 2023. A literature survey with the focus on magnetically coupled wireless power transfer systems developed for engineering and biomedical applications. Micromachines 14:786 doi: 10.3390/mi14040786 |
[43] |
Peng Y, Qi W, Chen Y, Mai R, Madawala UK. 2024. Wireless sensor power supply based on eddy currents for structural health monitoring. IEEE Transactions on Industrial Electronics 71:7252−61 doi: 10.1109/TIE.2023.3299043 |
[44] |
Hatchavanich N, Sangswang A, Nutwong S, Konghirun M. 2024. Bifurcation identification from magnetic flux distribution by using TMR sensor-based wireless power transfer system. IEEE Access 12:53178−88 doi: 10.1109/ACCESS.2024.3382938 |
[45] |
Wu Y, Jiang Y, Li Y, Yuan H, Wang X, et al. 2024. Precise parameterized modeling of coil inductance in wireless power transfer systems. IEEE Transactions on Power Electronics 39(9):11746−57 doi: 10.1109/TPEL.2024.3389746 |
[46] |
Li H, Fu M. 2024. Evaluation and suppression of high-frequency radiated EMI in inductive power transfer system. IEEE Transactions on Power Electronics 39:8998−9006 doi: 10.1109/TPEL.2024.3388573 |
[47] |
Lagorio S, Blettner M, Baaken D, Feychting M, Karipidis K, et al. 2021. The effect of exposure to radiofrequency fields on cancer risk in the general and working population: a protocol for a systematic review of human observational studies. Environment International 157:106828 doi: 10.1016/j.envint.2021.106828 |
[48] |
Razek A. 2024. Analysis and control of ornamental plant responses to exposure to electromagnetic fields. Ornamental Plant Research 4:e009 doi: 10.48130/opr-0024-0007 |
[49] |
International Commission on Non-Ionizing Radiation Protection (ICNIRP). 2010. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Physics 99:818−36 doi: 10.1097/HP.0b013e3181f06c86 |
[50] |
International Commission on Non-Ionizing Radiation Protection (ICNIRP). 2020. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Physics 118:483−524 doi: 10.1097/HP.0000000000001210 |
[51] |
IEEE. C95.1-2019-IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz. New York, USA: IEEE. DOI: 10.1109/IEEESTD.2019.8859679 |
[52] |
U. S. Food and Drug Administration. 2020. Scientific Evidence for Cell Phone Safety. www.fda.gov/radiation-emitting-products/cell-phones/scientific-evidence-cell-phone-safety (Accessed on 4 January 2024 |
[53] |
Council of the European Union. 1999. EU Recommendation 1999/519/EC on the Limitation of Exposure of the General Public to Electromagnetic Fields (0 Hz to 300 GHz). https://eur-lex.europa.eu/eli/reco/1999/519/oj (Accessed on 4 January 2024 |
[54] |
Maxwell JC. 1865. VIII. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society 155:459−512 doi: 10.1098/rstl.1865.0008 |
[55] |
Razek A. 2022. Biological and medical disturbances due to exposure to fields emitted by electromagnetic energy devices — a review. Energies 15:4455 doi: 10.3390/en15124455 |
[56] |
Razek A. 2023. Thermal effects of electromagnetic origin from heating processes to biological disturbances due to field exposure—a review. Thermal Science and Engineering 6:1950 doi: 10.24294/tse.v6i1.1950 |
[57] |
Razek A. 2023. Assessment of EMF troubles of biological and instrumental medical questions and analysis of their compliance with standards. Standards 3:227−39 doi: 10.3390/standards3020018 |
[58] |
Pennes HH. 1998. Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. Journal of Applied Physiology 85(1):5−34 doi: 10.1152/jappl.1998.85.1.5 |
[59] |
Nunes AS, Dular P, Chadebec O, Kuo-Peng P. 2018. Subproblems applied to a 3-D magnetostatic facet FEM formulation. IEEE Transactions on Magnetics 54:7402209 doi: 10.1109/TMAG.2018.2828786 |
[60] |
Li G, Ojeda J, Hoang E, Gabsi M, Lecrivain M. 2012. Thermal–electromagnetic analysis for driving cycles of embedded flux-switching permanent-magnet motors. IEEE Transactions on Vehicular Technology 61(1):140−51 doi: 10.1109/TVT.2011.2177283 |
[61] |
Piriou F, Razek A. 1990. Numerical simulation of a nonconventional alternator connected to a rectifier. IEEE Transactions on Energy Conversion 5:512−18 doi: 10.1109/60.105275 |
[62] |
Bernard L. 2007. Electrical characterization of biological tissues and computing of phenomena induced in the human body by electromagnetic fields below 1 GHz. PhD Thesis. Universities of Ecole Centrale de Lyon, France and Universidade federal de Minas Gerais, Brazil. |
[63] |
Ren Z, Razek A. 1990. Force calculation by Maxwell stress tensor in 3D hybrid finite element-boundary integral formulation. IEEE Transactions on Magnetics 26(5):2774−76 doi: 10.1109/20.104869 |
[64] |
Freschi F, Giaccone L, Cirimele V, Canova A. 2018. Numerical assessment of low-frequency dosimetry from sampled magnetic fields. Physics in Medicine and Biology 63(1):015029 doi: 10.1088/1361-6560/aa9915 |
[65] |
Li C, Ren Z, Razek A. 1994. An approach to adaptive mesh refinement for three-dimensional eddy-current computations. IEEE Transactions on Magnetics 30:113−17 doi: 10.1109/20.272523 |
[66] |
Piriou F, Razek A. 1983. Calculation of saturated inductances for numerical simulation of synchronous machines. IEEE Transactions on Magnetics 19:2628−31 doi: 10.1109/TMAG.1983.1062831 |
[67] |
Madani SS, Schaltz E, Kær SK. 2020. Thermal analysis of cold plate with different configurations for thermal management of a lithium-ion battery. Batteries 6:17 doi: 10.3390/batteries6010017 |
[68] |
Gabriel S, Lau RW, Gabriel C. 1996. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology 41:2251 doi: 10.1088/0031-9155/41/11/002 |
[69] |
Barchanski A, Steiner T, De Gersem H, Clemens M, Weiland T. 2006. Local grid refinement for low-frequency current computations in 3-D human anatomy models. IEEE Transactions on Magnetics 42:1371−74 doi: 10.1109/TMAG.2006.871449 |
[70] |
Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Lloyd B, et al. 2022. iT'S Database for thermal andelectromagnetic parameters of biological tissues. Version 4.1. DOI: 10.13099/VIP21000-04-1 |
[71] |
Makarov SN, Noetscher GM, Yanamadala J, Piazza MW, Louie S, et al. 2017. Virtual human models for electromagnetic studies and their applications. IEEE Reviews in Biomedical Engineering 10:95−121 doi: 10.1109/RBME.2017.2722420 |
[72] |
Zang Z, Guo Z, Fan X, Han M, Du A, et al. 2022. Assessing the performance of the pilot National Parks in China. Ecological Indicators 145:109699 doi: 10.1016/j.ecolind.2022.109699 |
[73] |
Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:eaax3100 doi: 10.1126/science.aax3100 |
[74] |
Coad A, Nightingale P, Stilgoe J, Vezzani A. 2021. Editorial: the dark side of innovation. Industry and Innovation 28:102−12 doi: 10.1080/13662716.2020.1818555 |
[75] |
Kruželák J, Kvasničáková A, Ušák E, Ušáková M, Dosoudil R, et al. 2020. Rubber magnets based on NBR and lithium ferrite with the ability to absorb electromagnetic radiation. Polymers for Advanced Technologies 31:1624−33 doi: 10.1002/pat.4891 |
[76] |
Qin M, Zhang L, Wu H. 2022. Dielectric loss mechanism in electromagnetic wave absorbing materials. Advanced Science 9:2105553 doi: 10.1002/advs.202105553 |
[77] |
Lestari M, Sulhadi S, Sutikno S. 2023. The effect of ornamental plants on reducing the intensity of electromagnetic wave radiation. Physics Communication 7(1):35−42 doi: 10.15294/physcomm.v7i1.41534 |
[78] |
Ilmiawati A, Falestin M, Maddu A, Irfana L, Sugita P, et al. 2023. Films from PVA and Sansevieria trifasciata leaves extracts as a smartphone protector with radiation reducing property and its LC-MS analysis. Indonesian Journal of Chemistry 23(3):594−608 doi: 10.22146/ijc.76809 |
[79] |
Covic GA, Boys JT. 2013. Inductive power transfer. Proceedings of the IEEE 101(6):1276−89 doi: 10.1109/JPROC.2013.2244536 |
[80] |
Zhang Z, Pang H, Georgiadis A, Cecati C. 2019. Wireless power transfer — an overview. IEEE Transactions on Industrial Electronics 66:1044−58 doi: 10.1109/TIE.2018.2835378 |
[81] |
Li S, Mi CC. 2015. Wireless power transfer for electric vehicle applications. IEEE Journal of Emerging and Selected Topics in Power Electronics 3:4−17 doi: 10.1109/JESTPE.2014.2319453 |
[82] |
Erel MZ, Bayindir KC, Aydemir MT, Chaudhary SK, Guerrero JM. 2022. A comprehensive review on wireless capacitive power transfer technology: fundamentals and applications. IEEE Access 10:3116−43 doi: 10.1109/ACCESS.2021.3139761 |
[83] |
Lu F, Zhang H, Mi C. 2017. A review on the recent development of capacitive wireless power transfer technology. Energies 10:1752 doi: 10.3390/en10111752 |
[84] |
Gao M, Yao Y, Yang F, Ye J, Liu G, et al. 2023. Two-dimensional materials for wireless power transfer. Device 1(2):100022 doi: 10.1016/j.device.2023.100022 |
[85] |
Clerckx B, Kim J, Choi KW, Kim DI. 2022. Foundations of wireless information and power transfer: theory, prototypes, and experiments. Proceedings of the IEEE 110:8−30 doi: 10.1109/JPROC.2021.3132369 |
[86] |
Zhu X, Jin K, Hui Q, Gong W, Mao D. 2021. Long-range wireless microwave power transmission: a review of recent progress. IEEE Journal of Emerging and Selected Topics in Power Electronics 9:4932−46 doi: 10.1109/JESTPE.2020.3038166 |
[87] |
Mohsan SAH, Qian H, Amjad H. 2023. A comprehensive review of optical wireless power transfer technology. Frontiers of Information Technology & Electronic Engineering 24:767−800 doi: 10.1631/FITEE.2100443 |
[88] |
Dehghani Soltani M, Sarbazi E, Bamiedakis N, de Souza P, Kazemi H, et al. 2022. Safety analysis for laser-based optical wireless communications: a tutorial. Proceedings of the IEEE 110:1045−72 doi: 10.1109/JPROC.2022.3181968 |
[89] |
Jin K, Zhou W. 2019. Wireless laser power transmission: a review of recent progress. IEEE Transactions on Power Electronics 34:3842−59 doi: 10.1109/TPEL.2018.2853156 |