[1]

Agre P. 2006. The aquaporin water channels. Proceedings of the American Thoracic Society 3:5−13

doi: 10.1513/pats.200510-109JH
[2]

Tyerman SD, McGaughey SA, Qiu J, Yool AJ, Byrt CS. 2021. Adaptable and multifunctional ion-conducting aquaporins. Annual Review of Plant Biology 72:703−36

doi: 10.1146/annurev-arplant-081720-013608
[3]

Preston GM, Carroll TP, Guggino WB, Agre P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385−87

doi: 10.1126/science.256.5055.385
[4]

Ishibashi K, Tanaka Y, Morishita Y. 2023. Evolutionary overview of aquaporin superfamily. In Aquaporins. Advances in Experimental Medicine and Biology, ed. Yang B. vol 1398. Singapore: Springer. pp. 81−98. DOI: 10.1007/978-981-19-7415-1_6

[5]

Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, et al. 2006. Structural mechanism of plant aquaporin gating. Nature 439:688−94

doi: 10.1038/nature04316
[6]

Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, et al. 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481−86

doi: 10.1126/science.290.5491.481
[7]

Sui H, Han BG, Lee JK, Walian P, Jap BK. 2001. Structural basis of water specific transport through the AQP1 water channel. Nature 414:872−78

doi: 10.1038/414872a
[8]

Byrt CS, Zhao M, Kourghi M, Bose J, Henderson SW, et al. 2017. Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH. Plant Cell and Environment 40:802−15

doi: 10.1111/pce.12832
[9]

Wang H, Schoebel S, Schmitz F, Dong H, Hedfalk K. 2020. Characterization of aquaporin-driven hydrogen peroxide transport. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862:183065.

doi: 10.1016/j.bbamem.2019.183065
[10]

Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, et al. 2001. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology 126:1358−69

doi: 10.1104/pp.126.4.1358
[11]

Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. 2005. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology 46:1568−77

doi: 10.1093/pcp/pci172
[12]

Abascal F, Irisarri I, Zardoya R. 2014. Diversity and evolution of membrane intrinsic proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes 1840:1468−81

doi: 10.1016/j.bbagen.2013.12.001
[13]

Zou Z, Gong J, An F, Xie G, Wang J, et al. 2015. Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue. BMC Genomics 16:1001

doi: 10.1186/s12864-015-2152-6
[14]

Zou Z, Gong J, Huang Q, Mo Y, Yang L, et al. 2015. Gene structures, evolution, classification and expression profiles of the aquaporin gene family in castor bean (Ricinus communis L.). PLoS One 10:e0141022

doi: 10.1371/journal.pone.0141022
[15]

Zou Z, Yang L, Gong J, Mo Y, Wang J, et al. 2016. Genome-wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis. Frontiers in Plant Science 7:395

doi: 10.3389/fpls.2016.00395
[16]

Zou Z, Yang J. 2019. Genome-wide comparison reveals divergence of cassava and rubber aquaporin family genes after the recent whole-genome duplication. BMC Genomics 20:380

doi: 10.1186/s12864-019-5780-4
[17]

Zou Z, Zheng Y, Xie Z. 2023. Analysis of Carica papaya informs lineage-specific evolution of the aquaporin (AQP) family in Brassicales. Plants 12:3847

doi: 10.3390/plants12223847
[18]

Wudick MM, Luu DT, Maurel C. 2009. A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytologist 184:289−302

doi: 10.1111/j.1469-8137.2009.02985.x
[19]

Chaumont F, Tyerman SD. 2014. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiology 164:1600−18

doi: 10.1104/pp.113.233791
[20]

Qiao X, Zheng Y, Yang J, Zeng C, Zou Z. 2022. Gene cloning, subcellular localization and multimerization analysis of HbPIP1;1 from Hevea brasiliensis. Chinese Journal of Tropical Crops 43:2405−12

doi: 10.3969/j.issn.1000-2561.2022.12.002
[21]

Zheng YJ, Chang LL, Zhao YG, Zeng CY, Zou Z. 2024. Molecular cloning and characterization of CePIP1;1, an aquaporin gene highly abundant in Cyperus esculentus tubers. Chinese Journal of Tropical Crops 45:894−901

[22]

Zou Z, Zheng Y, Qiao X, Yang J. 2024. Subcellular localization and multimerization analyses of HbPIP2;3, an efficient water transporter from Hevea brasiliensis. Chinese Journal of Tropical Crops, 45:443−49

[23]

Niemeyer PW, Irisarri I, Scholz P, Schmitt K, Valerius O, et al. 2022. A seed-like proteome in oil-rich tubers. The Plant Journal 112:518−34

doi: 10.1111/tpj.15964
[24]

Xiao Y, Zou Z, Zhao Y, Guo A, Zhang L. 2022. Molecular cloning and characterization of an acetolactate synthase gene (CeALS) from tigernut (Cyperus esculentus L.). Biotechnology Bulletin 38:184−92

doi: 10.13560/j.cnki.biotech.bull.1985.2021-1198
[25]

Zou Z, Xiao YH, Zhang L, Zhao YG. 2023. Analysis of Lhc family genes reveals development regulation and diurnal fluctuation expression patterns in Cyperus esculentus, a Cyperaceae plant. Planta 257:59

doi: 10.1007/s00425-023-04092-5
[26]

Zou Z, Xiao Y, Zhang L, Zhao Y. 2023. Cloning and characterization of CeEPSPS, a gene encoding 5-enolpyruvylshikimate-3-phosphate synthase from tigernut (Cyperus esculentus L.). Chinese Journal of Tropical Crops 44(1):26−34

doi: 10.3969/j.issn.1000-2561.2023.01.004
[27]

Zou Z, Zheng Y, Chang L, Zou L, Zhang L, et al. 2024. TIP aquaporins in Cyperus esculentus: genome-wide identification, expression profiles, subcellular localizations, and interaction patterns. BMC Plant Biology 24:298

doi: 10.1186/s12870-024-04969-x
[28]

Turesson H, Marttila S, Gustavsson KE, Hofvander P, Olsson ME, et al. 2010. Characterization of oil and starch accumulation in tubers of Cyperus esculentus var. sativus (Cyperaceae): A novel model system to study oil reserves in nonseed tissues. American Journal of Botany 97:1884−93

doi: 10.3732/ajb.1000200
[29]

Xu S, Zou Z, Xiao Y, Zhang L, Kong H, et al. 2022. Cloning and functional characterization of CeWRI1, a gene involved in oil accumulation from tigernut (Cyperus esculentus L.) tubers. Chinese Journal of Tropical Crops 43:923−29

doi: 10.3969/j.issn.1000-2561.2022.05.006
[30]

Zou Z, Zheng Y, Zhang Z, Xiao Y, Xie Z, et al. 2023. Molecular characterization of oleosin genes in Cyperus esculentus, a Cyperaceae plant producing oil in underground tubers. Plant Cell Reports 42:1791−808

doi: 10.1007/s00299-023-03066-x
[31]

Zou Z, Zhao Y, Zhang L, Kong H, Guo Y, et al. 2021. Single-molecule real-time (SMRT)-based full-length transcriptome analysis of tigernut (Cyperus esculentus L.). Chinese Journal of Oil Crop Sciences 43:229−35

doi: 10.19802/j.issn.1007-9084.2020230
[32]

Zou Z, Zhao Y, Zhang L, Xiao Y, Guo A. 2022. Analysis of Cyperus esculentus SMP family genes reveals lineage-specific evolution and seed desiccation-like transcript accumulation during tuber maturation. Industrial Crops and Products 187:115382

doi: 10.1016/j.indcrop.2022.115382
[33]

Bai X, Chen T, Wu Y, Tang M, Xu ZF. 2021. Selection and validation of reference genes for qRT-PCR analysis in the oil-rich tuber crop tiger nut (Cyperus esculentus) based on transcriptome data. International Journal of Molecular Sciences 22:2569

doi: 10.3390/ijms22052569
[34]

Zhao X, Yi L, Ren Y, Li J, Ren W, et al. 2023. Chromosome-scale genome assembly of the yellow nutsedge (Cyperus esculentus). Genome Biology and Evolution 15:evad027

doi: 10.1093/gbe/evad027
[35]

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389−402

doi: 10.1093/nar/25.17.3389
[36]

Planta J, Liang YY, Xin H, Chansler MT, Prather LA, et al. 2022. Chromosome-scale genome assemblies and annotations for Poales species Carex cristatella, Carex scoparia, Juncus effusus, and Juncus inflexus. G3 Genes|Genomes|Genetics 12:jkac211

doi: 10.1093/g3journal/jkac211
[37]

Hofstatter PG, Thangavel G, Lux T, Neumann P, Vondrak T, et al. 2022. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185:3153−68

doi: 10.1016/j.cell.2022.06.045
[38]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[39]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[40]

Zou Z, Yang J, Zhang X. 2019. Insights into genes encoding respiratory burst oxidase homologs (RBOHs) in rubber tree (Hevea brasiliensis Muell. Arg.). Industrial Crops and Products 128:126−39

doi: 10.1016/j.indcrop.2018.11.005
[41]

Qiao X, Li Q, Yin H, Qi K, Li L, et al. 2019. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biology 20:38

doi: 10.1186/s13059-019-1650-2
[42]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91

doi: 10.1093/molbev/msm088
[43]

Persson E, Sonnhammer ELL. 2022. InParanoid-DIAMOND: faster orthology analysis with the InParanoid algorithm. Bioinformatics 38:2918−19

doi: 10.1093/bioinformatics/btac194
[44]

Zou Z, Xie G, Yang L. 2017. Papain-like cysteine protease encoding genes in rubber (Hevea brasiliensis): Comparative genomics, phylogenetic and transcriptional profiling analysis. Planta 246:999−1018

doi: 10.1007/s00425-017-2739-z
[45]

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods 5:621−28

doi: 10.1038/nmeth.1226
[46]

Wang C, Chen L, Cai ZC, Chen C, Liu Z, et al. 2020. Comparative proteomic analysis reveals the molecular mechanisms underlying the accumulation difference of bioactive constituents in Glycyrrhiza uralensis fisch under salt stress. Journal of Agricultural and Food Chemistry 68:1480−93

doi: 10.1021/acs.jafc.9b04887
[47]

Maurel C, Verdoucq L, Luu DT, Santoni V. 2008. Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology 59:595−624

doi: 10.1146/annurev.arplant.59.032607.092734
[48]

Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, et al. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393−97

doi: 10.1038/nature01853
[49]

Chaumont F, Barrieu F, Jung R, Chrispeels MJ. 2000. Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiology 122:1025−34

doi: 10.1104/pp.122.4.1025
[50]

Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, et al. 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biology 13:R3

doi: 10.1186/gb-2012-13-1-r3
[51]

Jiao Y, Li J, Tang H, Paterson AH. 2014. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. The Plant Cell 26:2792−802

doi: 10.1105/tpc.114.127597
[52]

Bowers JE, Chapman BA, Rong J, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433−8

doi: 10.1038/nature01521
[53]

Daniels MJ, Mirkov TE, Chrispeels MJ. 1994. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiology 106:1325−33

doi: 10.1104/pp.106.4.1325
[54]

Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R. 2001. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology 125:1206−15

doi: 10.1104/pp.125.3.1206
[55]

Azad AK, Ahmed J, Alum MA, Hasan MM, Ishikawa T, et al. 2016. Genome-wide characterization of major intrinsic proteins in four grass plants and their non-aqua transport selectivity profiles with comparative perspective. PLoS One 11:e0157735

doi: 10.1371/journal.pone.0157735
[56]

Shivaraj SM, Deshmukh R, Bhat JA, Sonah H, Bélanger RR. 2017. Understanding aquaporin transport system in eelgrass (Zostera marina L.), an aquatic plant species. Frontiers in Plant Science 8:1334

doi: 10.3389/fpls.2017.01334
[57]

Govaerts R, Simpson DA, Goetghebeur P, Wilson KL, Egorova T, et al. 2007. World checklist of Cyperaceae. The Board of Trustees of the Royal Botanic Gardens, Kew

[58]

Can M, Wei W, Zi H, Bai M, Liu Y, et al. 2020. Genome sequence of Kobresia littledalei, the first chromosome-level genome in the family Cyperaceae. Scientific Data 7:175

doi: 10.1038/s41597-020-0518-3
[59]

Malz S, Sauter M. 1999. Expression of two PIP genes in rapidly growing internodes of rice is not primarily controlled by meristem activity or cell expansion. Plant Molecular Biology 40:985−95

doi: 10.1023/A:1006265528015
[60]

Li L, Li S, Tao Y, Kitagawa Y. 2000. Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Science 154:43−51

doi: 10.1016/S0168-9452(99)00269-1
[61]

Li G, Han J, Yi C, Luo H, Wang Y, et al. 2024. Global characterization of OsPIP aquaporins reveals that the H2O2 transporter OsPIP2;6 increases resistance to rice blast. The Crop Journal 12:102−9

doi: 10.1016/j.cj.2023.11.004
[62]

Ding L, Uehlein N, Kaldenhoff R, Guo S, Zhu Y, et al. 2019. Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Plant Physiology and Biochemistry 139:152−60

doi: 10.1016/j.plaphy.2019.03.017
[63]

Liu S, Fukumoto T, Gena P, Feng P, Sun Q, et al. 2020. Ectopic expression of a rice plasma membrane intrinsic protein (OsPIP1;3) promotes plant growth and water uptake. The Plant Journal 102:779−96

doi: 10.1111/tpj.14662
[64]

Bai J, Wang X, Yao X, Chen X, Lu K, et al. 2021. Rice aquaporin OsPIP2;2 is a water-transporting facilitator in relevance to drought-tolerant responses. Plant Direct 5:e338

doi: 10.1002/pld3.338
[65]

Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, et al. 2004. The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology 45:481−89

doi: 10.1093/pcp/pch058
[66]

Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M. 2008. Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant and Cell Physiology 49:30−39

doi: 10.1093/pcp/pcm162
[67]

Heinen RB, Ye Q, Chaumont F. 2009. Role of aquaporins in leaf physiology. Journal of Experimental Botany 60:2971−85

doi: 10.1093/jxb/erp171
[68]

Mori IC, Rhee J, Shibasaka M, Sasano S, Kaneko T, et al. 2014. CO2 transport by PIP2 aquaporins of barley. Plant and Cell Physiology 55:251−7

doi: 10.1093/pcp/pcu003
[69]

Wang C, Hu H, Qin X, Zeise B, Xu D, et al. 2016. Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permeable PIP2;1 aquaporin as CARBONIC ANHYDRASE4 interactor. The Plant Cell 28:568−82

doi: 10.1105/tpc.15.00637
[70]

Ermakova M, Osborn H, Groszmann M, Bala S, Bowerman A, et al. 2021. Expression of a CO2-permeable aquaporin enhances mesophyll conductance in the C4 species Setaria viridis. eLife 10:e70095

doi: 10.7554/eLife.70095
[71]

Baaziz KB, Lopez D, Rabot A, Combes D, Gousset A, et al. 2012. Light-mediated Kleaf induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: Walnut (Juglans regia) case study. Tree Physiology 32:423−34

doi: 10.1093/treephys/tps022
[72]

Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, et al. 2014. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: Correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany 65:3143−56

doi: 10.1093/jxb/eru160
[73]

An F, Zou Z, Cai X, Wang J, Rookes J, et al. 2015. Regulation of HbPIP2;3, a latex-abundant water transporter, is associated with latex dilution and latex yield in rubber tree (Hevea brasiliensis MuellArg.). PLoS One 10:e0125595

doi: 10.1371/journal.pone.0125595
[74]

Sakurai-Ishikawa J, Murai-Hatano M, Hayashi H, Ahamed A, Fukushi K, et al. 2011. Transpiration from shoots triggers diurnal changes in root aquaporin expression. Plant, Cell & Environment 34:1150−63

doi: 10.1111/j.1365-3040.2011.02313.x
[75]

Yang X, Niu L, Zhang Y, Ren W, Yang C, et al. 2022. Morpho-agronomic and biochemical characterization of accessions of tiger nut (Cyperus esculentus) grown in the north temperate zone of China. Plants 11:923

doi: 10.3390/plants11070923
[76]

Delahaie J, Hundertmark M, Bove J, Leprince O, Rogniaux H, et al. 2013. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. Journal of Experimental Botany 64:4559−73

doi: 10.1093/jxb/ert274