[1] |
Piao S, Liu Q, Chen A, Janssens IA, Fu Y, et al. 2019. Plant phenology and global climate change: current progresses and challenges. Global Change Biology 25:1922−40 doi: 10.1111/gcb.14619 |
[2] |
Vitasse Y, Baumgarten F, Zohner CM, Rutishauser T, Pietragalla B, et al. 2022. The great acceleration of plant phenological shifts. Nature Climate Change 12:300−02 doi: 10.1038/s41558-022-01283-y |
[3] |
Gallinat AS, Primack RB, Wagner DL. 2015. Autumn, the neglected season in climate change research. Trends in Ecology and Evolution 30:169−76 doi: 10.1016/j.tree.2015.01.004 |
[4] |
Fu YH, Piao S, Delpierre N, Hao F, Hänninen H, et al. 2018. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Global Change Biology 24:2159−68 doi: 10.1111/gcb.14021 |
[5] |
Jeong SJ, Ho CH, Gim HJ, Brown ME. 2011. Phenology shifts at start vs. end of growing season in temperature vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology 17:2385−99 doi: 10.1111/j.1365-2486.2011.02397.x |
[6] |
Liu Q, Fu YH, Zhu Z, Liu Y, Liu Z, et al. 2016. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biology 22:3702−11 doi: 10.1111/gcb.13311 |
[7] |
Asse D, Chuine I, Vitasse Y, Yoccoz NG, Delpierre N, et al. 2018. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology 252:220−30 doi: 10.1016/j.agrformet.2018.01.030 |
[8] |
Chen L, Huang JG, Ma Q, Hänninen H, Tremblay F, et al. 2019. Long-term changes in the impact of global warming on leaf phenology of four temperate tree species. Global Change Biology 25:997−1004 doi: 10.1111/gcb.14496 |
[9] |
Mo Y, Li X, Guo Y, Fu Y. 2023. Warming increases the differences among spring phenology models under future climate change. Frontiers in Plant Science 14:1266801 doi: 10.3389/fpls.2023.1266801 |
[10] |
Tao J, Man R, Dang Q. 2021. Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming. Trees, Forests and People 6:100127 doi: 10.1016/j.tfp.2021.100127 |
[11] |
Chen L, Huang J, Ma Q, Hänninen H, Rossi S, et al. 2018. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Global Change Biology 24:3969−75 doi: 10.1111/gcb.14288 |
[12] |
Zani D, Crowther TW, Mo L, Renner SS, Zohner CM. 2020. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370:1066−71 doi: 10.1126/science.abd8911 |
[13] |
Li X, Wang X, Fang Y, Liu D, Huang K, et al. 2023. Phenology advances uniformly in spring but diverges in autumn among three temperate tree species in response to warming. Agricultural and Forest Meteorology 336:109475 doi: 10.1016/j.agrformet.2023.109475 |
[14] |
Buttò V, Khare S, Jain P, de Lima Santos G, Rossi S. 2023. Spatial patterns and climatic drivers of leaf spring phenology of maple in eastern North America. Science of The Total Environment 857:159064 doi: 10.1016/j.scitotenv.2022.159064 |
[15] |
Mo Y, Zhang J, Jiang H, Fu YH. 2022. A comparative study of 17 phenological models to predict the start of the growing season. Frontiers in Forest and Global Change 5:1032066 doi: 10.3389/ffgc.2022.1032066 |
[16] |
Usmani A, Silvestro R, Zhang S, Huang JG, Saracino A, et al. 2020. Ecotypic differentiation of black spruce populations: temperature triggers bud burst but not bud set. Trees 34:1313−21 doi: 10.1007/s00468-020-01999-4 |
[17] |
Liu Q, Piao S, Janssens IA, Fu Y, Peng S, et al. 2018. Extension of the growing season increases vegetation exposure to frost. Nature Communications 9:426 doi: 10.1038/s41467-017-02690-y |
[18] |
Zohner CM, Mo L, Renner SS, Svenning JC, Vitasse Y, et al. 2020. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America 117:12192−200 doi: 10.1073/pnas.1920816117 |
[19] |
Costanza JK, Koch FH, Reeves MC. 2023. Future exposure of forest ecosystems to multi-year drought in the United States. Ecosphere 14:e4525 doi: 10.1002/ecs2.4525 |
[20] |
Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, et al. 2013. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences of the United States of America 111:3262−67 doi: 10.1073/pnas.122247311 |
[21] |
Aubin I, Boisvert-Marsh L, Kebli H, McKenney D, Pedlar J, et al. 2018. Tree vulnerability to climate change: improving exposure-based assessments using traits as indicators of sensitivity. Ecosphere 9:e02108 doi: 10.1002/ecs2.2108 |
[22] |
Myers DT, Ficklin DL, Robeson SM. 2023. Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds. Hydrology and Earth System Sciences 27:1755−70 doi: 10.5194/hess-27-1755-2023 |
[23] |
Jeong DI, Sushama L. 2018. Rain-on-snow events over North America based on two Canadian regional climate models. Climate Dynamics 50:303−16 doi: 10.1007/s00382-017-3609-x |
[24] |
Blahušiaková A, Matoušková M, Jenicek M, Ledvinka O, Kliment Z, et al. 2020. Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe. Hydrological Sciences Journal 65:2083−96 doi: 10.1080/02626667.2020.1784900 |
[25] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, et al. 2002. Fine root architecture of nine North American trees. Ecological Monographs 72:293−309 doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 |
[26] |
Strong WL, La Roi GH. 1983. Root-system morphology of common boreal forest trees in Alberta, Canada. Canadian Journal of Forest Research 13:1164−73 doi: 10.1139/x83-155 |
[27] |
Brandt JP, Flannigan MD, Maynard DG, Thompson ID, Volney WJA. 2013. An introduction to Canada's boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environmental Reviews 21:207−26 doi: 10.1139/er-2013-0040 |
[28] |
Bergeron Y, Gauthier S, Kafka V, Lefort P, Lesieur D. 2001. Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Canadian Journal of Forest Research 31:384−91 doi: 10.1139/x00-178 |
[29] |
Gaboriau DM, Remy CC Girardin MP, Asselin H, Hély C, et al. 2020. Temperature and fuel availability control fire size/severity in the boreal forest of central Northwest Territories, Canada. Quaternary Science Reviews 250:106697 doi: 10.1016/j.quascirev.2020.106697 |
[30] |
Marquis B, Bergeron Y, Houle D, Leduc M, Rossi S. 2022. Variability in frost occurrence under climate change and consequent risk of damage to trees of western Québec, Canada. Scientific Reports 12:7220 doi: 10.1038/s41598-022-11105-y |
[31] |
Saucier JP, Baldwin K, Krestov P, Jorgenson T. 2015, Boreal forests. In Routhledge Handbook of Forest Ecology, eds Peh KSH, Corlett RT, Bergeron V, et al. London: Routhledge. https://doi.org/10.4324/9781315818290-3 |
[32] |
Saucier JP, Robitaille A, Grondin P. 2009. Cadre bioclimatique du Québec. In Manuel de foresterie, 2nd edition, ed. Doucet M. Côté. Québec, Canada: Ordre des ingénieurs forestiers du Québec, Éditions Multimondes. pp. 186−205 |
[33] |
Cannell MGR, Smith RI. 1983. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology 20:951−63 doi: 10.2307/2403139 |
[34] |
Hänninen H. 2016. Boreal and temperature trees in a changing climate: modelling the ecophysiology of seasonality. Helsinki, Finland: Springer. xiv, 342 pp. https://doi.org/10.1007/978-94-017-7549-6 |
[35] |
Man R, Lu P, Dhang QL. 2017. Insufficient chilling effects vary among boreal tree species and chilling duration. Frontiers in Plant Science 8:1354 doi: 10.3389/fpls.2017.01354 |
[36] |
Man R, Colombo S, Lu P, Dang QL. 2016. Effects of winter warming on cold hardiness and spring budbreak of four boreal conifers. Botany 94:117−26 doi: 10.1139/cjb-2015-0181 |
[37] |
Bronson DR, Gower ST, Tanner M, Van Herk I. 2009. Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Global Change Biology 15:1534−43 doi: 10.1111/j.1365-2486.2009.01845.x |
[38] |
Antonucci S, Rossi S, Deslauriers A, Lombardi F, Marchetti M, et al. 2015. Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. Tree Physiology 35:1086−94 doi: 10.1093/treephys/tpv077 |
[39] |
Marquis B, Bergeron Y, Simard M, Tremblay F. 2020. Probability of spring frosts, not growing degree-days, drives onset of spruce budburst in plantations at the boreal-temperate forest ecotone. Frontiers in Plant Science 11:1031 doi: 10.3389/fpls.2020.01031 |
[40] |
Lechowicz MJ. 1984. Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities. The American Naturalist 124:821−42 doi: 10.1086/284319 |
[41] |
Hawkins CDB, Dhar A. 2012. Spring bud phenology of 18 Betula papyrifera populations in British Columbia. Scandinavian Journal of Forest Research 27:507−19 doi: 10.1080/02827581.2012.671356 |
[42] |
Olson MS, Levsen N, Soolanayakanahally RY, Guy RD, Schroeder WR, et al. 2013. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Molecular Ecology 22:1214−30 doi: 10.1111/mec.12067 |
[43] |
Zhang H, Chuine I, Regnier P, Ciais P, Yuan W. 2022. Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding. Nature Climate Change 12:193−99 doi: 10.1038/s41558-021-01261-w |
[44] |
Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR. 2010. The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrology and Earth System Sciences 14:1125−38 doi: 10.5194/hess-14-1125-2010 |
[45] |
Cannon AJ, Sobie SR, Murdock TQ. 2015. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? Journal of Climate 28:6938−59 doi: 10.1175/JCLI-D-14-00754.1 |
[46] |
Craigmile PF, Guttorp P. 2023. Comparing CMIP6 climate model simulations of annual global mean temperatures to a new combined data product. Earth and Space Science 10:e2022EA002468 doi: 10.1029/2022EA002468 |
[47] |
Beguería S, Vicente-Serrano SM. 2023. SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index. R package version 1.8.1. https://CRAN.R-project.org/package=SPEI |
[48] |
R version 4.3. 1 (2023-06-16 ucrt) -- "Beagle Scouts" Copyright (C). 2023. The R foundation for statistical computing platform: x86_64-w64-mingw32/x64 (64-bit |
[49] |
Beguería S, Vicente-Serrano SM, Reig F, Latorre B. 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools datasets and drought monitoring. International Journal of Climatology 34:3001−23 doi: 10.1002/joc.3887 |
[50] |
Hufkens K, Basler D, Milliman T, Melaas EK, Richardson AD. 2018. An integrated phenology modelling framework in R. Methods in Ecology & Evolution 9:1276−85 doi: 10.1111/2041-210X.12970 |
[51] |
Buermann W, Bikash PR, Jung M, Burn DH, Reichstein M. 2013. Earlier springs decrease peak summer productivity in North American boreal forests. Environmental Research Letters 8:024027 doi: 10.1088/1748-9326/8/2/024027 |
[52] |
Marquis B, Lajoie G. 2024. Experimental exposure to winter thaws reveal tipping point in yellow birch bud mortality and phenology in the northern temperate forest of Québec, Canada. Climate Change Ecology 7:100087 doi: 10.1016/j.ecochg.2024.100087 |
[53] |
Li Y, Zhang W, Schwalm CR, Gentine P, Smith WK, et al. 2023. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystem. Nature Climate Change 13:182−88 doi: 10.1038/s41558-022-01584-2 |
[54] |
Van Kampen R, Fisichelli N, Zhang YJ, Wason J. 2022. Drought timing and species growth phenology determine intra-annual recovery of tree height and diameter growth. AoB PLANTS 14:plac012 doi: 10.1093/aobpla/plac012 |
[55] |
Aitken SN, Bemmels JB. 2016. Time to get moving: assisted gene flow of forest trees. Evolutionary Applications 9:271−90 doi: 10.1111/eva.12293 |
[56] |
Marquis B, Bergeron Y, Simard M, Tremblay F. 2020. Growing-season frost is a better predictor of tree growth than mean annual temperature in boreal mixedwood forest plantations. Global Change Biology 26:6537−54 doi: 10.1111/gcb.15327 |
[57] |
Chen L, Keski-Saari S, Kontunen-Soppela S, Zhu X, Zhou X, et al. 2023. Immediate and carry-over effects of late-spring frost and growing season drought on forest gross primary productivity capacity in the Northern Hemisphere. Global Change Biology 29:3924−40 doi: 10.1111/gcb.16751 |
[58] |
Girardin MP, Guo XJ, Marchand W, Depardieu C. 2024. Unravelling the biogeographic determinants of tree growth sensitivity to freeze and drought in Canada's forests. Journal of Ecology 112:848−69 doi: 10.1111/1365-2745.14275 |
[59] |
Turcotte A, Morin H, Krause C, Deslauriers A. Thibeault-Martel M. 2009. The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agricultural and Forest Meteorology 149:1403−09 doi: 10.1016/j.agrformet.2009.03.010 |
[60] |
Podadera DS, Balducci L, Rossi S, Cartenì F, Néron V, et al. 2024. Differential advances in budburst timing among black spruce, white spruce and balsam fir across Canada. Agricultural and Forest Meteorology 349:109950 doi: 10.1016/j.agrformet.2024.109950 |