[1]

He N, Zhang C, Qi X, Zhao S, Tao Y, et al. 2013. Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications 4:2445

doi: 10.1038/ncomms3445
[2]

Chu R, Sun X. 1986. Study of the cytogenetics of Morus - I. Chromosome number of some mulberry varieties. Acta Sericologica Sinica 1:199−202,60

[3]

Jiang TQ, Zhu Y. 1985. Karyotype analysis in deploid mulberry. Newsletter of Sericultural Science 4:9−17

[4]

Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, et al. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105−21

doi: 10.1111/j.1095-8339.2009.00996.x
[5]

He N, Xiang Z. 2014. The genome project of mulberry. Acta Sericologica Sinica 40:3−6

doi: 10.13441/j.cnki.cykx.2014.01.014
[6]

Lu C, Ji D, Zhu F, Zhao A, Luo G, et al. 2017. Chinese mulberry cultivar. China: Southwest China Normal University Press. 394 pp.

[7]

He N, Zhao A, Qin J, Zeng Q, Xiang Z. 2012. Mulberry genome project and mulberry industry. Acta Sericologica Sinica 38:140−45

[8]

Liang L, Wu X, Zhu M, Zhao W, Li F, et al. 2012. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacognosy Magazine 8:215−24

doi: 10.4103/0973-1296.99287
[9]

Gryn-Rynko A, Bazylak G, Olszewska-Slonina D. 2016. New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves. Biomedicine & Pharmacotherapy 84:628−36

doi: 10.1016/j.biopha.2016.09.081
[10]

Wei H, Liu S, Liao Y, Ma C, Wang D, et al. 2018. A systematic review of the medicinal potential of mulberry in treating diabetes mellitus. The American Journal of Chinese Medicine 46:1743−70

doi: 10.1142/S0192415X1850088X
[11]

Qian Q, Zhao H, Qian W, Cai X. 2015. A clinical study of 100 cases of diabetic lower limb vascular lesions in the treatment of early diabetes mellitus. Acta Chinese Medicine and Pharmacology 43:66−69

[12]

Tian Y. 2019. Clinical study on Sangzhi Granules combined with Dapagliflozin Tablets in treatment of type 2 diabetes mellitus. Drugs & Clinic 34:135−38

[13]

Andallu B, Kumar AV, Varadacharyulu NC. 2012. Oxidative stress in streptozocin-diabetic rats: Amelioration by mulberry (Morus Indica L.) leaves. Chinese Journal of Integrative Medicine

doi: 10.1007/s11655-012-1234-4
[14]

Gregory TR. 2001. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells, Molecules, and Diseases 27:830−43

doi: 10.1006/bcmd.2001.0457
[15]

Yamanouchi H, Koyama A, Takyu T, Muramatsu N. 2010. Nuclear DNA amounts in diploid mulberry species (Morus spp.). Journal of Insect Biotechnology and Sericology 79:1_001−1_8

doi: 10.11416/jibs.79.1_001
[16]

Chang LY, Li KT, Yang WJ, Chung MC, Chang JC, et al. 2018. Ploidy level and their relationship with vegetative traits of mulberry (Morus spp.) species in Taiwan. Scientia Horticulturae 235:78−85

doi: 10.1016/j.scienta.2018.01.029
[17]

Tahara M. 1909. On the chromosomes of mulberries. The Botanical Magazine 23:343−53

doi: 10.15281/jplantres1887.23.271_343
[18]

Osawa K. 1916. Mulberry cytology and experimental studies. Sericulture Experiment Station Report 1:215−300

[19]

Wu Y. 1964. Identification of polyploidy of different mulberry varieties in China. Acta Sericologica Sinica 2:165−70

[20]

Pan Y. 1980. Examination technique of chromosomes in mulberry root tip cells. Acta Sericologica Sinica 6:195−97

[21]

Jiang T, Zhu Y. 1985. The studies ploidy of on the mulberry of the southwest region. Newsletter of Sericultural Science 4:11−20

[22]

Yu M, Guo H, Song D, Yuan S. 1987. Study on chromosome plurality of mulberry trees in Xinjiang. Newsletter of Sericultural Science 6:49−51

[23]

Yu M. 1988. Cytology studies of Chuansang (M notabilis C.k.Schn). Newsletter of Sericultural Science 7:21−22,9

[24]

Yu M, Xiang Z, Feng L, Ke Y, Zhang X, et al. 1996. The discovery and study on a natural haploid Morus Notabilis schneid. Acta Sericologica Sinica 22(2):67−71

[25]

Ma B, Wang H, Liu J, Chen L, Xia X, et al. 2023. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. Horticulture Research 10:uhad111

doi: 10.1093/hr/uhad111
[26]

Doležel J, Bartoš J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95:99−110

doi: 10.1093/aob/mci005
[27]

Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2:2233−44

doi: 10.1038/nprot.2007.310
[28]

Tian X, Zhou X, Gong N. 2011. Applications of flow cytometry in plant research - analysis of nuclear DNA content and ploidy level in plant cells. Chinese Agricultural Science Bulletin 27:21−27

doi: 10.11924/j.issn.1000-6850.2010-3313
[29]

Carvalho FSR, Feitosa VP, da Cruz Fonseca SG, de Vasconcelos Araújo TD, Soares ECS, et al. 2017. Physicochemical and rheological characterization of different Carnoy's solutions applied in oral and maxillofacial surgery. Journal of Raman Spectroscopy 48:1375−84

doi: 10.1002/jrs.5227
[30]

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, et al. 1998. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Annals of Botany 82:17−26

doi: 10.1093/oxfordjournals.aob.a010312
[31]

Gnanesh BN, Mondal R, Arunakumar GS, Manojkumar HB, Singh P, et al. 2023. Genome size, genetic diversity, and phenotypic variability imply the effect of genetic variation instead of ploidy on trait plasticity in the cross-pollinated tree species of mulberry. PLoS One 18:e0289766

doi: 10.1371/journal.pone.0289766
[32]

Kruthika HS, Rukmangada MS, Naik VG. 2023. Genome size, chromosome number variation and its correlation with stomatal characters for assessment of ploidy levels in a core subset of mulberry (Morus spp.) germplasm. Gene 881:147637

doi: 10.1016/j.gene.2023.147637
[33]

Zeng Q, Chen M, Wang S, Xu X, Li T, et al. 2022. Comparative and phylogenetic analyses of the chloroplast genome reveal the taxonomy of the Morus genus. Frontiers in Plant Science 13:1047592

doi: 10.3389/fpls.2022.1047592
[34]

Wang Z, Wang W, Xie X, Wang Y, Yang Z, et al. 2022. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nature Communications 13:3891

doi: 10.1038/s41467-022-31581-0
[35]

Costich DE, Ortiz R, Meagher TR, Bruederle LP, Vorsa N. 1993. Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. Theoretical and Applied Genetics 86:1001−06

doi: 10.1007/BF00211053
[36]

Ozias-Akins P, Jarret RL. 1994. Nuclear DNA content and ploidy levels in the genus Ipomoea. Journal of the American Society for Horticultural Science 119:110−15

doi: 10.21273/JASHS.119.1.110
[37]

Meng R, Finn C. 2002. Determining ploidy level and nuclear DNA content in Rubus by flow cytometry. Journal of the American Society for Horticultural Science 127:767−75

doi: 10.21273/JASHS.127.5.767
[38]

Xia Z, Dai X, Fan W, Liu C, Zhang M, et al. 2022. Chromosome-level genomes reveal the genetic basis of descending dysploidy and sex determination in Morus plants. Genomics, Proteomics & Bioinformatics 20:1119−37

doi: 10.1016/j.gpb.2022.08.005
[39]

Xuan Y, Ma B, Li D, Tian Y, Zeng Q, et al. 2022. Chromosome restructuring and number change during the evolution of Morus notabilis and Morus alba. Horticulture Research 9:uhab030

doi: 10.1093/hr/uhab030
[40]

Li M, Sun W, Wang F, Wu X, Wang J. 2021. Asymmetric epigenetic modification and homoeolog expression bias in the establishment and evolution of allopolyploid Brassica napus. New Phytologist 232:898−913

doi: 10.1111/nph.17621
[41]

Gregory TR. 2005. Genome Size Evolution in Animals. In The evolution of the genome, ed. Gregory TR. US: Academic Press. pp. 3−87. https://doi.org/10.1016/B978-012301463-4/50003-6

[42]

Bennett MD, Leitch IJ. 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Annals of Botany 95:45−90

doi: 10.1093/aob/mci003
[43]

Leitch I, M. D B. 2002. New insights into patterns of nuclear genome size evolution in plants. Current Genomics 3:551−62

doi: 10.2174/1389202023350183
[44]

Pellicer J, Leitch IJ. 2020. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226:301−05

doi: 10.1111/nph.16261
[45]

Garnatje T, Canela MA, Garcia S, Hidalgo O, Pellicer J, et al. 2011. GSAD: a genome size in the Asteraceae database. Cytometry Part A 79A:401−04

doi: 10.1002/cyto.a.21056
[46]

Virales D, Fernández P, Garnetje T, Garcia N. 2019. Progress in the study of genome size evolution in Asteraceae: analysis of the last update. Database 2019:baz098

doi: 10.1093/database/baz098