[1]

Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany 64:1451−69

doi: 10.1093/jxb/ert035
[2]

Wu W, Chen F. 2016. Malate transportation and accumulation in fruit cell. Endocytobiosis and Cell Research 27:107−12

[3]

Jaeger SR, Andani Z, Wakeling IN, MacFie HJH. 1998. Consumer preferences for fresh and aged apples: a cross-cultural comparison. Food Quality and Preference 9:355−66

doi: 10.1016/s0950-3293(98)00031-7
[4]

Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. 2021. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Horticulture Research 8:227

doi: 10.1038/s41438-021-00702-z
[5]

Yang M, Hou G, Peng Y, Wang L, Liu X, et al. 2023. FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit. Frontiers in Plant Science 14:1138865

doi: 10.3389/fpls.2023.1138865
[6]

Yao YX, Li M, Liu Z, You CX, Wang DM, et al. 2009. Molecular cloning of three malic acid related genes MdPEPC, MdVHA-A, MdcyME and their expression analysis in apple fruits. Scientia Horticulturae 122:404−8

doi: 10.1016/j.scienta.2009.05.033
[7]

Gao M, Zhao H, Zheng L, Zhang L, Peng Y, et al. 2022. Overexpression of apple Ma12, a mitochondrial pyrophosphatase pump gene, leads to malic acid accumulation and the upregulationof malate dehydrogenase in tomato and apple calli. Horticulture Research 9:uhab053

doi: 10.1093/hr/uhab053
[8]

Zhang L, Wang C, Jia R, Yang N, Jin L, et al. 2022. Malate metabolism mediated by the cytoplasmic malate dehydrogenase gene MdcyMDH affects sucrose synthesis in apple fruit. Horticulture Research 9:uhac194

doi: 10.1093/hr/uhac194
[9]

Gao M, Yang N, Shao Y, Shen T, Li W, et al. 2024. An insertion in the promoter of a malate dehydrogenase gene regulates malic acid content in apple fruit. Plant Physiology 00:kiae303

doi: 10.1093/plphys/kiae303
[10]

Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329−44

doi: 10.1016/j.phytochem.2009.08.006
[11]

Hu DG, Li YY, Zhang QY, Li M, Sun CH, et al. 2017. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple. The Plant Journal 91:443−54

doi: 10.1111/tpj.13579
[12]

Ma B, Liao L, Fang T, Peng Q, Ogutu C, et al. 2019. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. Plant Biotechnology Journal 17:674−86

doi: 10.1111/pbi.13007
[13]

Martinoia E. 2018. Vacuolar transporters – companions on a longtime journey. Plant Physiology 176:1384−407

doi: 10.1104/pp.17.01481
[14]

Alabd A, Cheng H, Ahmad M, Wu X, Peng L, et al. 2023. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. Plant Physiology 192:1982−96

doi: 10.1093/plphys/kiad168
[15]

Zhang C, Geng Y, Liu H, Wu M, Bi J, et al. 2023. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube. Plant Physiology 191:414−27

doi: 10.1093/plphys/kiac491
[16]

Li C, Krishnan S, Zhang M, Hu D, Meng D, et al. 2024. Alternative splicing underpins the ALMT9 transporter function for vacuolar malic acid accumulation in apple. Advanced Science 11:2310159

doi: 10.1002/advs.202310159
[17]

Li W, Lu X, Li J. 2022. The effect of organic nutrient solution on flavor in ripe cherry tomato fruit—Transcriptome and metabolomic analyses. Environmental and Experimental Botany 194:104721

doi: 10.1016/j.envexpbot.2021.104721
[18]

Zheng L, Ma W, Liu P, Song S, Wang L, et al. 2024. Transcriptional factor MdESE3 controls fruit acidity by activating genes regulating malic acid content in apple. Plant Physiology 00:kiae282

doi: 10.1093/plphys/kiae282
[19]

Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, et al. 2014. The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications 5:4026

doi: 10.1038/ncomms5026
[20]

Jia D, Shen F, Wang Y, Wu T, Xu X, et al. 2018. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. The Plant Journal 95:427−43

doi: 10.1111/tpj.13957
[21]

Ban S, Xu K. 2020. Identification of two QTLs associated with high fruit acidity in apple using pooled genome sequencing analysis. Horticulture Research 7:171

doi: 10.1038/s41438-020-00393-y
[22]

Shi CY, Hussain SB, Yang H, Bai YX, Khan MA, et al. 2019. CsPH8, a P-type proton pump gene, plays a key role in the diversity of citric acid accumulation in citrus fruits. Plant Science 289:110288

doi: 10.1016/j.plantsci.2019.110288
[23]

Lu Z, Huang Y, Mao S, Wu F, Liu Y, et al. 2022. The high-quality genome of pummelo provides insights into the tissue-specific regulation of citric acid and anthocyanin during domestication. Horticulture Research 9:uhac175

doi: 10.1093/hr/uhac175
[24]

Zheng B, Zhao L, Jiang X, Cherono S, Liu J, et al. 2021. Assessment of organic acid accumulation and its related genes in peach. Food Chemistry 334:127567

doi: 10.1016/j.foodchem.2020.127567
[25]

Umer MJ, Bin Safdar L, Gebremeskel H, Zhao S, Yuan P, et al. 2020. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. Horticulture Research 7:193

doi: 10.1038/s41438-020-00416-8
[26]

Yang J, Zhang J, Niu XQ, Zheng XL, Chen X, et al. 2021. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat. PLoS One 16:e0238873

doi: 10.1371/journal.pone.0238873
[27]

Li M, Li P, Ma F, Dandekar AM, Cheng L. 2018. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Horticulture Research 5:60

doi: 10.1038/s41438-018-0064-8
[28]

Yao YX, Li M, Zhai H, You CX, Hao YJ. 2011. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. Journal of Plant Physiology 168:474−80

doi: 10.1016/j.jplph.2010.08.008
[29]

Diakou P, Svanella L, Raymond P, Gaudillère JP, Moing A. 2000. Phosphoenolpyruvate carboxylase during grape berry development: protein level, enzyme activity and regulation. Australian Journal of Plant Physiology 27:221−29

doi: 10.1071/pp99141
[30]

Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, et al. 2005. Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832−47

doi: 10.1007/s00425-005-0017-y
[31]

Shi J, Li FF, Ma H, Li ZY, Xu JZ. 2015. Effects of different dwarfing interstocks on key enzyme activities and the expression of genes related to malic acid metabolism in Red Fuji apples. Genetics and Molecular Research 14:17673−83

doi: 10.4238/2015.December.21.40
[32]

Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D, Pedreño MA, Bru-Martínez R. 2011. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Journal of Experimental Botany 62:2521−69

doi: 10.1093/jxb/erq434
[33]

Wang QJ, Sun H, Dong QL, Sun TY, Jin ZX, et al. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnology Journal 14:1986−97

doi: 10.1111/pbi.12556
[34]

Yu JQ, Gu KD, Sun CH, Zhang QY, Wang JH, et al. 2021. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. Plant Biotechnology Journal 19:285−99

doi: 10.1111/pbi.13461
[35]

Zhang L, Ma B, Wang C, Chen X, Ruan YL, et al. 2022. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). Plant Physiology 188:2059−72

doi: 10.1093/plphys/kiac023
[36]

Mignard P, Beguería S, Reig G, Font i Forcada C, Moreno MA. 2021. Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus × domestica Borkh). Scientia Horticulturae 285:110142

doi: 10.1016/j.scienta.2021.110142
[37]

Chen F, Liu X, Chen L. 2009. Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chemistry 114:657−64

doi: 10.1016/j.foodchem.2008.10.003
[38]

Plotto A, Bai J, Baldwin E. 2020. Effect of CA/MA on sensory quality. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce, eds Gil MI, Beaudry R. Amsterdam: Elsevier. pp. 109−30. https://doi.org/10.1016/B978-0-12-804599-2.00007-7

[39]

Walker RP, Chen ZH. 2002. Phosphoenolpyruvate carboxykinase: structure, function and regulation. Advances in Botanical Research 38:93−189

doi: 10.1016/s0065-2296(02)38029-7
[40]

Famiani F, Battistelli A, Moscatello S, Cruz-Castillo JG, Walker RP. 2015. The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents–a review. Revista Chapingo Serie Horticultura 21:97−128

doi: 10.5154/r.rchsh.2015.01.004
[41]

Famiani F, Cultrera NGM, Battistelli A, Casulli V, Proietti P, et al. 2005. Phosphoenolpyruvate carboxykinase and its potential role in the catabolism of organic acids in the flesh of soft fruit during ripening. Journal of Experimental Botany 56:2959−69

doi: 10.1093/jxb/eri293
[42]

Famiani F, Farinelli D, Frioni T, Palliotti A, Battistelli A, et al. 2016. Malate as substrate for catabolism and gluconeogenesis during ripening in the pericarp of different grape cultivars. Biologia Plantarum 60:155−62

doi: 10.1007/s10535-015-0574-2
[43]

Famiani F, Farinelli D, Moscatello S, Battistelli A, Leegood RC, et al. 2016. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis. Plant Physiology and Biochemistry 101:33−42

doi: 10.1016/j.plaphy.2016.01.007
[44]

MacRae AR, Moorhouse R. 1970. The oxidation of malate by mitochondria isolated from cauliflower buds. European Journal of Biochemistry 16:96−102

doi: 10.1111/j.1432-1033.1970.tb01058.x
[45]

Ollat N, Gaudillère JP. 2000. Carbon balance in developing grapevine berries. Acta Horticulturae 526:345−50

doi: 10.17660/actahortic.2000.526.37
[46]

Yang LT, Xie CY, Jiang HX, Chen LS. 2011. Expression of six malate-related genes in pulp during the fruit development of two loquat (Eriobotrya japonica) cultivars differing in fruit acidity. African Journal of Biotechnology 10:2414−22

[47]

Iannetta PPM, Escobar NM, Ross HA, Souleyre EJF, Hancock RD, et al. 2004. Identification, cloning and expression analysis of strawberry (Fragaria × ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase. Physiologia Plantarum 121:15−26

doi: 10.1111/j.0031-9317.2004.00302.x
[48]

Pracharoenwattana I, Smith SM. 2008. When is a peroxisome not a peroxisome? Trends in Plant Science 13:522−25

doi: 10.1016/j.tplants.2008.07.003
[49]

Liu S, Yang Y, Murayama H, Taira S, Fukushima T. 2004. Effects of CO2 on respiratory metabolism in ripening banana fruit. Postharvest Biology and Technology 33:27−34

doi: 10.1016/j.postharvbio.2004.01.006
[50]

Pua EC, Chandramouli S, Han P, Liu P. 2003. Malate synthase gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Williams). Journal of Experimental Botany 54:309−16

doi: 10.1093/jxb/erg030
[51]

Fontes N, Gerós H, Delrot S. 2011. Grape berry vacuole: a complex and heterogeneous membrane system specialized in the accumulation of solutes. American Journal of Enology and Viticulture 62:270−78

doi: 10.5344/ajev.2011.10125
[52]

Shiratake K, Martinoia E. 2007. Transporters in fruit vacuoles. Plant Biotechnology 24:127−33

doi: 10.5511/plantbiotechnology.24.127
[53]

Martinoia E, Maeshima M, Neuhaus HE. 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany 58:83−102

doi: 10.1093/jxb/erl183
[54]

Ligaba A, Dreyer I, Margaryan A, Schneider DJ, Kochian L, et al. 2013. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1. The Plant Journal 76:766−80

doi: 10.1111/tpj.12332
[55]

Ma B, Liao L, Zheng H, Chen J, Wu B, et al. 2015. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple. The Plant Genome 8:eplantgenome2015.03.0016

doi: 10.3835/plantgenome2015.03.0016
[56]

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, et al. 2004. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37:645−53

doi: 10.1111/j.1365-313x.2003.01991.x
[57]

Kovermann P, Meyer S, Hörtensteiner S, Picco C, Scholz-Starke J, et al. 2007. The Arabidopsis vacuolar malate channel is a member of the ALMT family. The Plant Journal 52:1169−80

doi: 10.1111/j.1365-313X.2007.03367.x
[58]

Liu J, Magalhaes JV, Shaff J, Kochian LV. 2009. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal 57:389−99

doi: 10.1111/j.1365-313X.2008.03696.x
[59]

Ligaba A, Maron L, Shaff J, Kochian L, Piñeros M. 2012. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant, Cell & Environment 35:1185−200

doi: 10.1111/j.1365-3040.2011.02479.x
[60]

Peng W, Wu W, Peng J, Li J, Lin Y, et al. 2018. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation. Journal of Integrative Plant Biology 60:216−31

doi: 10.1111/jipb.12604
[61]

Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H. 2006. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiology 142:1294−303

doi: 10.1104/pp.106.085233
[62]

Ye J, Wang X, Hu T, Zhang F, Wang B, et al. 2017. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell 29:2249−68

doi: 10.1105/tpc.17.00211
[63]

Bai Y, Dougherty L, Li M, Fazio G, Cheng L, et al. 2012. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Molecular Genetics and Genomics 287:663−78

doi: 10.1007/s00438-012-0707-7
[64]

Xu L, Qiao X, Zhang M, Zhang S. 2018. Genome-wide analysis of aluminum-activated malate transporter family genes in six rosaceae species, and expression analysis and functional characterization on malate accumulation in Chinese white pear. Plant Science 274:451−65

doi: 10.1016/j.plantsci.2018.06.022
[65]

Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, et al. 2011. Anion channels/transporters in plants: from molecular bases to regulatory networks. Annual Review of Plant Biology 62:25−51

doi: 10.1146/annurev-arplant-042110-103741
[66]

Eisenach C, Baetz U, Huck NV, Zhang J, De Angeli A, et al. 2017. ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis. The Plant Cell 29:2552−69

doi: 10.1105/tpc.17.00452
[67]

Luu K, Rajagopalan N, Ching JCH, Loewen MC, Loewen ME. 2019. The malate-activated ALMT12 anion channel in the grass Brachypodium distachyon is co-activated by Ca2+/calmodulin. Journal of Biological Chemistry 294:6142−56

doi: 10.1074/jbc.RA118.005301
[68]

Hoekenga OA, Maron LG, Piñeros MA, Cançado GMA, Shaff J, et al. 2006. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103:9738−43

doi: 10.1073/pnas.0602868103
[69]

Gruber BD, Delhaize E, Richardson AE, Roessner U, James RA, et al. 2011. Characterisation of HvALMT1 function in transgenic barley plants. Functional Plant Biology 38:163−75

doi: 10.1071/FP10140
[70]

Ding ZJ, Yan JY, Xu XY, Li GX, Zheng SJ. 2013. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. The Plant Journal 76:825−35

doi: 10.1111/tpj.12337
[71]

Piñeros MA, Cançado GMA, Maron LG, Lyi SM, Menossi M, et al. 2008. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter. The Plant Journal 53:352−67

doi: 10.1111/j.1365-313X.2007.03344.x
[72]

Zhou Y, Neuhäuser B, Neumann G, Ludewig U. 2020. LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation. Plant, Cell & Environment 43:1691−706

doi: 10.1111/pce.13762
[73]

Sasaki T, Tsuchiya Y, Ariyoshi M, Nakano R, Ushijima K, et al. 2016. Two members of the aluminum-activated malate transporter family, SlALMT4 and SlALMT5, are expressed during fruit development, and the overexpression of SlALMT5 alters organic acid contents in seeds in tomato (Solanum lycopersicum). Plant and Cell Physiology 57:2367−79

doi: 10.1093/pcp/pcw157
[74]

Sasaki T, Ariyoshi M, Yamamoto Y, Mori IC. 2022. Functional roles of ALMT-type anion channels in malate-induced stomatal closure in tomato and Arabidopsis. Plant, Cell & Environment 45:2337−50

doi: 10.1111/pce.14373
[75]

Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, et al. 2011. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. The Plant Journal 67:247−57

doi: 10.1111/j.1365-313X.2011.04587.x
[76]

Hafke JB, Hafke Y, Smith JAC, Lüttge U, Thiel G. 2003. Vacuolar malate uptake is mediated by an anion-selective inward rectifier. The Plant Journal 35:116−28

doi: 10.1046/j.1365-313x.2003.01781.x
[77]

Li C, Dougherty L, Coluccio AE, Meng D, El-Sharkawy I, et al. 2020. Apple ALMT9 requires a conserved C-terminal domain for malate transport underlying fruit acidity. Plant Physiology 182:992−1006

doi: 10.1104/pp.19.01300
[78]

Xu K, Wang A, Brown S. 2012. Genetic characterization of the Ma locus with pH and titratable acidity in apple. Molecular Breeding 30:899−912

doi: 10.1007/s11032-011-9674-7
[79]

De Angeli A, Baetz U, Francisco R, Zhang J, Chaves MM, et al. 2013. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta 238:283−91

doi: 10.1007/s00425-013-1888-y
[80]

Fu BL, Wang WQ, Li X, Qi TH, Shen QF, et al. 2023. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor, AcNAC1. Plant Biotechnology Journal 21:1695−706

doi: 10.1111/pbi.14070
[81]

Liu S, Liu X, Gou B, Wang D, Liu C, et al. 2022. The interaction between CitMYB52 and CitbHLH2 negatively regulates citrate accumulation by activating CitALMT in Citrus fruit. Frontiers in Plant Science 13:848869

doi: 10.3389/fpls.2022.848869
[82]

Yamaki S. 1984. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and amino acids. Plant and Cell Physiology 25:151−66

doi: 10.1093/oxfordjournals.pcp.a076688
[83]

Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, et al. 2005. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiology 137:901−10

doi: 10.1104/pp.104.058453
[84]

Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, et al. 2003. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proceedings of the National Academy of Sciences of the United States of America 100:11122−26

doi: 10.1073/pnas.1832002100
[85]

Frei B, Eisenach C, Martinoia E, Hussein S, Chen XZ, et al. 2018. Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis. Journal of Biological Chemistry 293:4180−90

doi: 10.1074/jbc.RA117.000851
[86]

Medeiros DB, Barros KA, Barros JAS, Omena-Garcia RP, Arrivault S, et al. 2017. Impaired malate and fumarate accumulation due to the mutation of the tonoplast dicarboxylate transporter has little effects on stomatal behavior. Plant Physiology 175:1068−81

doi: 10.1104/pp.17.00971
[87]

Shimada T, Nakano R, Shulaev V, Sadka A, Blumwald E. 2006. Vacuolar citrate/H+ symporter of citrus juice cells. Planta 224:472−80

doi: 10.1007/s00425-006-0223-2
[88]

Lin Q, Li S, Dong W, Feng C, Yin X, et al. 2015. Involvement of CitCHX and CitDIC in developmental-related and postharvest-hot-air driven citrate degradation in citrus fruits. PLoS One 10:e0119410

doi: 10.1371/journal.pone.0119410
[89]

Liu R, Li B, Qin G, Zhang Z, Tian S. 2017. Identification and functional characterization of a tonoplast dicarboxylate transporter in tomato (Solanum lycopersicum). Frontiers in Plant Science 8:186

doi: 10.3389/fpls.2017.00186
[90]

Liao L, Zhang W, Zhang B, Fang T, Wang XF, et al. 2021. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant 14:1454−71

doi: 10.1016/j.molp.2021.05.018
[91]

Yao YX, Dong QL, You CX, Zhai H, Hao YJ. 2011. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+, malate and soluble sugar accumulation. Plant Physiology and Biochemistry 49:1201−8

doi: 10.1016/j.plaphy.2011.05.012
[92]

Hu DG, Sun CH, Ma QJ, You CX, Cheng L, et al. 2016. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology 170:1315−30

doi: 10.1104/pp.15.01333
[93]

Terrier N, Sauvage FX, Ageorges A, Romieu C. 2001. Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213:20−28

doi: 10.1007/s004250000472
[94]

Regalado A, Pierri CL, Bitetto M, Laera VL, Pimentel C, et al. 2013. Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries. Planta 237:693−703

doi: 10.1007/s00425-012-1786-8
[95]

Mohammed SA, Nishio S, Takahashi H, Shiratake K, Ikeda H, et al. 2012. Role of vacuolar H+-inorganic pyrophosphatase in tomato fruit development. Journal of Experimental Botany 63:5613−21

doi: 10.1093/jxb/ers213
[96]

Hussain SB, Shi CY, Guo LX, Du W, Bai YX, et al. 2020. Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit. Journal of Experimental Botany 71:5935−47

doi: 10.1093/jxb/eraa298
[97]

Jiang YT, Tang RJ, Zhang YJ, Xue HW, Ferjani A, et al. 2020. Two tonoplast proton pumps function in Arabidopsis embryo development. New Phytologist 225:1606−17

doi: 10.1111/nph.16231
[98]

Gao MY, Liang J, li H, Zhong R, Di-an N. 2021. Loss-of-function of vacuolar-type H+ pyrophosphatase gene lead to reduce in stomatal aperture and density. IOP Conference Series: Earth and Environmental Science 657:012024

doi: 10.1088/1755-1315/657/1/012024
[99]

Maeshima M. 2000. Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta (BBA) - Biomembranes 1465:37−51

doi: 10.1016/s0005-2736(00)00130-9
[100]

Lu XP, Liu YZ, Zhou GF, Wei QJ, Hu HJ, et al. 2011. Identification of organic acid-related genes and their expression profiles in two pear (Pyrus pyrifolia) cultivars with difference in predominant acid type at fruit ripening stage. Scientia Horticulturae 129:680−87

doi: 10.1016/j.scienta.2011.05.014
[101]

Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, et al. 2002. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiologia Plantarum 114:259−70

doi: 10.1034/j.1399-3054.2002.1140212.x
[102]

Aprile A, Federici C, Close TJ, De Bellis L, Cattivelli L, et al. 2011. Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Functional & Integrative Genomics 11:551−63

doi: 10.1007/s10142-011-0226-3
[103]

Li SJ, Yin XR, Xie XL, Allan AC, Ge H, et al. 2016. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports 6:20151

doi: 10.1038/srep20151
[104]

Jia D, Wu P, Shen F, Li W, Zheng X, et al. 2021. Genetic variation in the promoter of an R2R3−MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). Plant Physiology 186:549−68

doi: 10.1093/plphys/kiab098
[105]

Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, et al. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports 6:32−43

doi: 10.1016/j.celrep.2013.12.009
[106]

Li Y, Provenzano S, Bliek M, Spelt C, Appelhagen I, et al. 2016. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification. New Phytologist 211:1092−107

doi: 10.1111/nph.14008
[107]

Eisenach C, Baetz U, Martinoia E. 2014. Vacuolar proton pumping: more than the sum of its parts? Trends in Plant Science 19:344−46

doi: 10.1016/j.tplants.2014.03.008
[108]

Faraco M, Di Sansebastiano GP, Spelt K, Koes RE, Quattrocchio FM. 2011. One protoplast is not the other! Plant Physiology 156:474−78

doi: 10.1104/pp.111.173708
[109]

Strazzer P, Spelt CE, Li S, Bliek M, Federici CT, et al. 2019. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications 10:744

doi: 10.1038/s41467-019-08516-3
[110]

Zheng L, Ma W, Deng J, Peng Y, Tian R, et al. 2022. A MdMa13 gene encoding tonoplast P3B-type ATPase regulates organic acid accumulation in apple. Scientia Horticulturae 296:110916

doi: 10.1016/j.scienta.2022.110916
[111]

Amato A, Cavallini E, Walker AR, Pezzotti M, Bliek M, et al. 2019. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal 99:1220−41

doi: 10.1111/tpj.14419
[112]

Song JX, Chen YC, Lu ZH, Zhao GP, Wang XL, et al. 2022. PbPH5, an H+ P-ATPase on the tonoplast, is related to malic acid accumulation in pear fruit. Journal of Integrative Agriculture 21:1645−57

doi: 10.1016/s2095-3119(21)63790-5
[113]

Pant BD, Oh S, Lee HK, Nandety RS, Mysore KS. 2020. Antagonistic regulation by CPN60A and CLPC1 of TRXL1 that regulates MDH activity leading to plant disease resistance and thermotolerance. Cell Reports 33:108512

doi: 10.1016/j.celrep.2020.108512
[114]

Zhang QY, Gu KD, Wang JH, Yu JQ, Wang XF, et al. 2020. BTB-BACK-TAZ domain protein MdBT2-mediated MdMYB73 ubiquitination negatively regulates malate accumulation and vacuolar acidification in apple. Horticulture Research 7:151

doi: 10.1038/s41438-020-00384-z
[115]

Wang JH, Gu KD, Zhang QY, Yu JQ, Wang CK, et al. 2023. Ethylene inhibits malate accumulation in apple by transcriptional repression of aluminum-activated malate transporter 9 via the WRKY31-ERF72 network. New Phytologist 239:1014−34

doi: 10.1111/nph.18795
[116]

Peng Y, Yuan Y, Chang W, Zheng L, Ma W, et al. 2023. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. The Plant Journal 115:1231−42

doi: 10.1111/tpj.16314
[117]

Zheng L, Liao L, Duan C, Ma W, Peng Y, et al. 2023. Allelic variation of MdMYB123 controls malic acid content by regulating MdMa1 and MdMa11 expression in apple. Plant Physiology 192:1877−91

doi: 10.1093/plphys/kiad111
[118]

Nakatsukasa K, Okumura F, Kamura T. 2015. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Critical Reviews in Biochemistry and Molecular Biology 50:489−502

doi: 10.3109/10409238.2015.1081869
[119]

Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, et al. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160:1011−22

doi: 10.1104/pp.112.199703
[120]

Hu DG, Sun CH, Zhang QY, An JP, You CX, et al. 2016. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genetics 12:e1006273

doi: 10.1371/journal.pgen.1006273
[121]

Hu DG, Yu JQ, Han PL, Xie XB, Sun CH, et al. 2019. The regulatory module MdPUB29-MdbHLH3 connects ethylene biosynthesis with fruit quality in apple. New Phytologist 221:1966−82

doi: 10.1111/nph.15511
[122]

Zhang QY, Gu KD, Cheng L, Wang JH, Yu JQ, et al. 2020. BTB-TAZ domain protein MdBT2 modulates malate accumulation and vacuolar acidification in response to nitrate. Plant Physiology 183:750−64

doi: 10.1104/pp.20.00208
[123]

Chen Q, Xu X, Xu D, Zhang H, Zhang C, et al. 2019. WRKY18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar. Plant Physiology 180:2212−26

doi: 10.1104/pp.19.00511
[124]

Li X, Guo W, Li J, Yue P, Bu H, et al. 2020. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit. Plant Physiology 182:2035−46

doi: 10.1104/pp.20.00002
[125]

Sicilia A, Scialò E, Puglisi I, Lo Piero AR. 2020. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit [Citrus sinensis L. (osbeck)] under cold stress. Journal of Agricultural and Food Chemistry 68:7024−31

doi: 10.1021/acs.jafc.0c02360
[126]

Yu H, Zhang C, Lu C, Wang Y, Ge C, et al. 2024. The lemon genome and DNA methylome unveil epigenetic regulation of citric acid biosynthesis during fruit development. Horticulture Research 11:uhae005

doi: 10.1093/hr/uhae005
[127]

Giné Bordonaba J, Terry LA. 2010. Manipulating the taste-related composition of strawberry fruits (Fragaria × ananassa) from different cultivars using deficit irrigation. Food Chemistry 122:1020−26

doi: 10.1016/j.foodchem.2010.03.060
[128]

Wu BH, Quilot B, Génard M, Kervella J, Li SH. 2005. Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Scientia Horticulturae 103:429−39

doi: 10.1016/j.scienta.2004.08.003
[129]

Centeno DC, Osorio S, Nunes-Nesi A, Bertolo ALF, Carneiro RT, et al. 2011. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. The Plant Cell 23:162−84

doi: 10.1105/tpc.109.072231
[130]

Osorio S, Vallarino JG, Szecowka M, Ufaz S, Tzin V, et al. 2013. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation. Plant Physiology 161:628−43

doi: 10.1104/pp.112.211094
[131]

Wei L, Mao W, Jia M, Xing S, Ali U, et al. 2018. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany 69:4805−20

doi: 10.1093/jxb/ery249
[132]

Bastías A, López-Climent M, Valcárcel M, Rosello S, Gómez-Cadenas A, et al. 2011. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiologia Plantarum 141:215−26

doi: 10.1111/j.1399-3054.2010.01435.x