[1]

Hatfield JL, Prueger JH. 2015. Temperature extremes: effect on plant growth and development. Weather and Climate Extremes 10:4−10

doi: 10.1016/j.wace.2015.08.001
[2]

Song L, Jiang Y, Zhao H, Hou M. 2012. Acquired thermotolerance in plants. Plant Cell, Tissue and Organ Culture (PCTOC) 111:265−76

doi: 10.1007/s11240-012-0198-6
[3]

Scarpeci TE, Zanor MI, Valle EM. 2008. Investigating the role of plant heat shock proteins during oxidative stress. Plant Signaling & Behavior 3:856−57

doi: 10.4161/psb.3.10.6021
[4]

Galicia-Juárez M, Sinagawa-Garcia S, Gutiérrez-Diez A, Williams-Alanís H, Zavala-García F. 2020. Thermotolerance in sorghum lines [Sorghum bicolor (L.) Moench] for grain. Revista Mexicana Ciencias Agrícolas 11:221−27

[5]

Nadeem M, Li J, Wang M, Shah L, Lu S, et al. 2018. Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy 8:128

doi: 10.3390/agronomy8070128
[6]

Yadav AK, Arya RK, Singh MK, Kumar D, Panchta R. 2016. Heat tolerance in pearl millet: a review. Forage Research 42:65−81

[7]

Sari A, Juniarti. 2023. Germination characteristics of sorghum (Sorghum bicolor L.) affected by temperature variation. Agronomy Research 21:347−56

doi: 10.15159/AR.23.021
[8]

Peacock JM. 1982. Response and tolerance of sorghum to temperature stress. Proceedings of the International Symposium on Sorghum, Patancheru, AP, India, 1981. pp. 143–58. Patancheru, AP, India: ICRISAT.

[9]

Akman Z. 2009. Comparison of high temperature tolerance in maize, rice and sorghum seeds by plant growth regulators. Journal of Animal and Veterinary Advances 8:358−61

[10]

Basha MH, Mehta AK. 2016. Screening of oat (Avena sativa L.) mutant lines for drought tolerance using polyethylene glycol-6000 at seedling stage. Progressive Research 11:5561−69

[11]

Pavli OI, Ghikas DV, Katsiotis A, Skaracis GN. 2011. Differential expression of heat shock protein genes in Sorghum (Sorghum bicolor L.) genotypes under heat stress. Australian Journal of Crop Science 5:511−15

[12]

Howarth CJ, Pollock CJ, Peacock JM. 1997. Development of laboratory-based methods for assessing seedling thermotolerance in pearl millet. New Phytologist 137:129−39

doi: 10.1046/j.1469-8137.1997.00827.x
[13]

Selvaraj MG, Burow G, Burke JJ, Belamkar V, Puppala N, et al. 2011. Heat stress screening of peanut (Arachis hypogaea L.) seedlings for acquired thermotolerance. Plant Growth Regulation 65:83−91

doi: 10.1007/s10725-011-9577-y
[14]

Choinski JS Jr. 1999. Laboratory studies of thermotolerance acquisition during seed imbibition & germination. The American Biology Teacher 61:534−37

doi: 10.2307/4450757
[15]

Narayanan T. 2018. Dheerpura society for advancement of science and rural development. Trends in Biosciences 6:1−10

[16]

Kumar RR, Rai RD. 2014. Can wheat beat the heat: understanding the mechanism of thermotolerance in wheat (Triticum aestivum L.). Cereal Research Communications 42:1−18

doi: 10.1556/CRC.42.2014.1.1
[17]

Ahmad M, Ahmad Waraich E, Skalicky M, Hussain S, Zulfiqar U, et al. 2021. Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: an overview. Frontiers in Plant Science 12:767150

doi: 10.3389/fpls.2021.767150
[18]

Arya R, Singh MK, Yadav AK, Kumar A, Kumar S. 2014. Advances in pearl millet to mitigate adverse environment conditions emerged due to global warming. Forage Research 40:57−70

[19]

Yadav AK, Narwal MS, Arya RK. 2013. Evaluation of pearl millet (Pennisetum glaucum) genotypes and validation of screening methods for supra-optimal temperature tolerance at seedling stage. Indian Journal of Agricultural Sciences 83:260−71

[20]

Bokszczanin KL, Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis S. 2013. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Frontiers in Plant Science 4:315

doi: 10.3389/fpls.2013.00315
[21]

Gong M, Chen BO, Li ZG, Guo LH. 2001. Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. Journal of Plant Physiology 158:1125−30

doi: 10.1078/0176-1617-00327
[22]

Nahar K, Hasanuzzaman M, Fujita M. 2016. Heat stress responses and thermotolerance in soybean. In Abiotic and Biotic Stresses in Soybean Production, volume 1, ed. Miransari M. Amsterdam: Academic Press. pp. 261−84. https://doi.org/10.1016/B978-0-12-801536-0.00012-8

[23]

Khan A, Ahmad M, Ahmed M, Iftikhar Hussain M. 2021. Rising atmospheric temperature impact on wheat and thermotolerance strategies. Plants 10:43

doi: 10.3390/plants10010043
[24]

Paupière MJ, van Heusden AW, Bovy AG. 2014. The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Metabolites 4:889−920

doi: 10.3390/metabo4040889
[25]

Mukesh Sankar S, Tara Satyavathi C, Singh SP, Singh MP, Bharadwaj C, et al. 2014. Genetic diversity analysis for high temperature stress tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. Indian Journal of Plant Physiology 19:324−29

doi: 10.1007/s40502-014-0099-2
[26]

Craufurd PQ, Peacock JM. 1993. Effect of heat and drought stress on Sorghum (Sorghum bicolor). II. grain yield. Experimental Agriculture 29:77−86

doi: 10.1017/s0014479700020421
[27]

Ndlovu E, van Staden J, Maphosa M. 2021. Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress 2:100018

doi: 10.1016/j.stress.2021.100018
[28]

Larkindale J, Hall JD, Knight MR, Vierling E. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138:882−97

doi: 10.1104/pp.105.062257
[29]

Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37:118−25

doi: 10.1016/j.tibs.2011.11.007
[30]

Yadav AK, Arya RK, Narwal MS. 2014. Screening of pearl millet F1 Hybrids for heat tolerance at early seedling stage. Advances in Agriculture 2014:231301

doi: 10.1155/2014/231301
[31]

Chakrabarty S, Mufumbo R, Windpassinger S, Jordan D, Mace E, et al. 2022. Genetic and genomic diversity in the sorghum gene bank collection of Uganda. BMC Plant Biology 22:378

doi: 10.1186/s12870-022-03770-y
[32]

Worku M, De Groote H, Munyua B, Makumbi D, Owino F, et al. 2020. On-farm performance and farmers' participatory assessment of new stress-tolerant maize hybrids in Eastern Africa. Field Crops Research 246:107693

doi: 10.1016/j.fcr.2019.107693
[33]

Cairns JE, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, et al. 2013. Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science 53:1335−46

doi: 10.2135/cropsci2012.09.0545
[34]

Chanza N, Musakwa W. 2022. Ecological and hydrological indicators of climate change observed by dryland communities of malipati in chiredzi, Zimbabwe. Diversity 14:541

doi: 10.3390/d14070541
[35]

Yeh CH, Kaplinsky NJ, Hu C, Charng YY. 2012. Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Science 195:10−23

doi: 10.1016/j.plantsci.2012.06.004
[36]

Joshi CP, Klueva NY, Morrow KJ, Nguyen HT. 1997. Expression of a unique plastid-localized heat-shock protein is genetically linked to acquired thermotolerance in wheat. Theoretical and Applied Genetics 95:834−41

doi: 10.1007/s001220050633
[37]

Sud S, Bhagwat SG. 2010. Assessment of acquired thermotolerance in Indian bread wheat and association with yield and component traits under heat stress environment. Journal of Food Agriculture & Environment 8:622−27

[38]

Pachauri RK, Reisinger A. 2008. Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report. Geneva, Switzerland: Intergovernmental Panel on Climate Change. 104 pp.