[1]

Dufault RJ, Ward B, Hassell RL. 2009. Dynamic relationships between field temperatures and romaine lettuce yield and head quality. Scientia Horticulturae 120:452−59

doi: 10.1016/j.scienta.2009.01.002
[2]

Sharma N, Acharya S, Kumar K, Singh N, Chaurasia OP. 2018. Hydroponics as an advanced technique for vegetable production: an overview. Journal of Soil and Water Conservation 17:364−71

doi: 10.5958/2455-7145.2018.00056.5
[3]

USDA Economic Research Service. U.S. lettuce production shifts regionally by season. 2023. Available from: www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=106516

[4]

Savvas D, Colla G, Rouphael Y, Schwarz D. 2010. Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae 127:156−61

doi: 10.1016/j.scienta.2010.09.011
[5]

Djidonou D, Leskovar DI. 2019. Seasonal changes in growth, nitrogen nutrition, and yield of hydroponic lettuce. HortScience 54:76−85

doi: 10.21273/HORTSCI13567-18
[6]

Sublett WL, Barickman TC, Sams CE. 2018. Effects of elevated temperature and potassium on biomass and quality of dark red 'Lollo Rosso' lettuce. Horticulturae 4:11

doi: 10.3390/horticulturae4020011
[7]

Sublett WL, Barickman TC, Sams CE. 2018. The effect of environment and nutrients on hydroponic lettuce yield, quality, and phytonutrients. Horticulturae 4:48

doi: 10.3390/horticulturae4040048
[8]

Maboko MM. 2007. Leafy lettuce grown in a hydroponics system. Undercover Farming 3:8

[9]

Li Q, Li X, Tang B, Gu M. 2018. Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae 4:35

doi: 10.3390/horticulturae4040035
[10]

Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer UTE, et al. 2011. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant, Cell & Environment 34:605−17

doi: 10.1111/j.1365-3040.2010.02266.x
[11]

Adhikari B, Olorunwa OJ, Wilson JC, Barickman TC. 2021. Morphological and physiological response of different lettuce genotypes to salt stress. Stresses 1:285−304

doi: 10.3390/stresses1040021
[12]

Ding X, Jiang Y, Zhao H, Guo D, He L, et al. 2018. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLoS One 13:e0202090

doi: 10.1371/journal.pone.0202090
[13]

Maggio A, Raimondi G, Martino A, De Pascale S. 2007. Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany 59:276−82

doi: 10.1016/j.envexpbot.2006.02.002
[14]

Else MA, Janowiak F, Atkinson CJ, Jackson MB. 2009. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Annals of Botany 103:313−23

doi: 10.1093/aob/mcn208
[15]

Conversa G, Bonasia A, Lazzizera C, Elia A. 2021. Soilless cultivation system, electrical conductivity of nutrient solution, and growing season on yield and quality of baby-leaf oak-leaf lettuce. Agronomy 11:1220

doi: 10.3390/agronomy11061220
[16]

Ghorbani M, Movahedi Z, Kheiri A, Rostami M. 2018. Effect of salinity stress on some morpho-physiological traits and quantity and quality of essential oils in Peppermint (Mentha piperita L.). Environmental Stresses in Crop Sciences 11:413−20

doi: 10.22077/escs.2018.953.1188
[17]

Akladious SA, Mohamed HI. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae 236:244−50

doi: 10.1016/j.scienta.2018.03.047
[18]

Silber A, Xu G, Levkovitch I, Soriano S, Bilu A, et al. 2003. High fertigation frequency: the effects on uptake of nutrients, water and plant growth. Plant and Soil 253:467−77

doi: 10.1023/A:1024857814743
[19]

Trejo-Téllez LI, Gómez-Merino FC. 2012. Nutrient solutions for hydroponic systems. In Hydroponics - A Standard Methodology for Plant Biological Researches, ed. Asao T. UK: InTech. pp. 1–22. https://doi.org/10.5772/37578

[20]

Pinter PJ Jr, Hatfield JL, Schepers JS, Barnes EM, Moran MS, et al. 2003. Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing 69:647−64

doi: 10.14358/PERS.69.6.647
[21]

Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment 30:258−70

doi: 10.1111/j.1365-3040.2007.01641.x
[22]

Flexas J, Escalona JM, Medrano H. 1999. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant, Cell & Environment 22:39−48

doi: 10.1046/j.1365-3040.1999.00371.x
[23]

Alam SM. 1999. Nutrient uptake by plants under stress conditions. In Handbook of Plant and Crop Stress, ed. Pessarakli M. Boca Raton: CRC Press. pp. 285−313

[24]

Samarakoon UC, Weerasinghe PA, Weerakkody WAP. 2006. Effect of electrical conductivity of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Tropical Agricultural Research 18:13

[25]

Drake PL, Froend RH, Franks PJ. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64:495−505

doi: 10.1093/jxb/ers347
[26]

Flexas J, Carriquí M, Coopman RE, Gago J, Galmés J, et al. 2014. Stomatal and mesophyll conductances to CO2 in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change? Plant Science 226:41−48

doi: 10.1016/j.plantsci.2014.06.011
[27]

Kosma C, Triantafyllidis V, Papasavvas A, Salahas G, Patakas A. 2013. Yield and nutritional quality of greenhouse lettuce as affected by shading and cultivation season. Emirates Journal of Food and Agriculture 25:974−79

[28]

Lerner HR. 2017. Plant Responses to environmental stresses: from phytohormones to genome reorganization: from phytohormones to genome reorganization. New York: Routledge. 750 pp. https://doi.org/10.1201/9780203743157

[29]

Ben-Asher J, Tsuyuki I, Bravdo BA, Sagih M. 2006. Irrigation of grapevines with saline water: I. leaf area index, stomatal conductance, transpiration and photosynthesis. Agricultural Water Management 83:13−21

doi: 10.1016/j.agwat.2006.01.002
[30]

Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, et al. 2020. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. The Plant Journal 101:858−73

doi: 10.1111/tpj.14587
[31]

Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1−14

doi: 10.1007/s00425-003-1105-5