[1] |
Wang X, Hu M, Xia Y, Wen X, Ding K. 2012. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Applied and Environmental Microbiology 78(19):7042−47 doi: 10.1128/AEM.01617-12 |
[2] |
Griffin JS, Wells GF. 2017. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly. The ISME Journal 11(2):500−11 doi: 10.1038/ismej.2016.121 |
[3] |
Stegen JC, Lin X, Konopka AE, Fredrickson JK. 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal 6(9):1653−64 doi: 10.1038/ismej.2012.22 |
[4] |
Ju F, Zhang T. 2015. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. The ISME Journal 9(3):683−95 doi: 10.1038/ismej.2014.162 |
[5] |
Chen Y, Lan S, Wang L, Dong S, Zhou H, et al. 2017. A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. Chemosphere 174:173−82 doi: 10.1016/j.chemosphere.2017.01.129 |
[6] |
Xia Y, Wang X, Wen X, Ding K, Zhou J, et al. 2014. Overall functional gene diversity of microbial communities in three full-scale activated sludge bioreactors. Applied Microbiology and Biotechnology 98(16):7233−42 doi: 10.1007/s00253-014-5791-7 |
[7] |
Ibarbalz FM, Orellana E, Figuerola ELM, Erijman L. 2016. Shotgun metagenomic profiles have a high capacity to discriminate samples of activated sludge according to wastewater type. Applied and Environmental Microbiology 82(17):5186−96 doi: 10.1128/AEM.00916-16 |
[8] |
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, et al. 2018. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution 234:190−213 doi: 10.1016/j.envpol.2017.11.060 |
[9] |
Nguyen LN, van de Merwe JP, Hai FI, Leusch FD, Kang J, et al. 2016. Laccase–syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: removal efficiency and effluent toxicity. Bioresource Technology 200:477−84 doi: 10.1016/j.biortech.2015.10.054 |
[10] |
Senthivelan T, Kanagaraj J, Panda RC. 2016. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach-a review. Biotechnology and Bioprocess Engineering 21:19−38 doi: 10.1007/s12257-015-0278-7 |
[11] |
Lucas D, Castellet-Rovira F, Villagrasa M, Badia-Fabregat M, Barceló D, et al. 2018. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Science of the Total Environment 610−611:1147−53 doi: 10.1016/j.scitotenv.2017.08.118 |
[12] |
Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, et al. 2017. Covalent immobilization of laccase onto nanofibrous membrane for degradation of pharmaceutical residues in water. ACS Sustainable Chemistry & Engineering 5(11):10430−38 doi: 10.1021/acssuschemeng.7b02465 |
[13] |
Rouches E, Herpoël-Gimbert I, Steyer JP, Carrere H. 2016. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renewable and Sustainable Energy Reviews 59:179−98 doi: 10.1016/j.rser.2015.12.317 |
[14] |
Khan AU, Ilyas M, Zamel D, Khan S, Ahmad A, et al. 2022. Bio-inspired fabrication of zinc oxide nanoparticles: Insight into biomedical applications. Annals of Advances in Chemistry 6:23−37 doi: 10.29328/journal.aac.1001028 |
[15] |
Zafiu C, Part F, Ehmoser EK, Kähkönen MA. 2021. Investigations on inhibitory effects of nickel and cobalt salts on the decolorization of textile dyes by the white rot fungus Phanerochaete velutina. Ecotoxicology and Environmental Safety 215:112093 doi: 10.1016/j.ecoenv.2021.112093 |
[16] |
Khan SA, Mehmood S, Nabeela, Iqbal A, Hamayun M. 2020. Industrial polluted soil borne fungi decolorize the recalcitrant azo dyes Synozol red HF-6BN and Synozol black B. Ecotoxicology and Environmental Safety 206:111381 doi: 10.1016/j.ecoenv.2020.111381 |
[17] |
Kapoor RT, Danish M, Singh RS, Rafatullah M, Abdul Khalil HPS. 2021. Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering 43:102255 doi: 10.1016/j.jwpe.2021.102255 |
[18] |
Ambrósio ST, Vilar JC Jr, da Silva CAA, Okada K, Nascimento AE, et al. 2012. A biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of Cunninghamella elegans UCP542. Molecules 17:452−62 doi: 10.3390/molecules17010452 |
[19] |
Baccar R, Blánquez P, Bouzid J, Feki M, Attiya H, et al. 2011. Decolorization of a tannery dye: from fungal screening to bioreactor application. Biochemical Engineering Journal 56:184−89 doi: 10.1016/j.bej.2011.06.006 |
[20] |
Mani P, VFidal VT, Bowman K, Breheny M, Chandra TS, et al. 2010. Degradation of azo dye (acid orange 7) in a microbial fuel cell: comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Frontiers in Energy Research 7:101 doi: 10.3389/fenrg.2019.00101 |
[21] |
Chhabra M, Mishra S, Sreekrishnan TR. 2015. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27. Journal of Environmental Health Science and Engineering 13:38 doi: 10.1186/s40201-015-0192-0 |
[22] |
Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R. 2017. Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conservation Science and Engineering 2:121−31 doi: 10.1007/s41101-017-0031-5 |
[23] |
Mani P, Keshavarz T, Chandra TS, Kyazze G. 2017. Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: influence of mitigating pH changes in the cathode chamber. Enzyme and Microbial Technology 96:170−76 doi: 10.1016/j.enzmictec.2016.10.012 |
[24] |
Nikam M, Patil S, Patil U, Khandare R, Govindwar S, et al. 2017. Biodegradation and detoxification of azo solvent dye by ethylene glycol tolerant ligninolytic ascomycete strain of Pseudocochlio bolus verruculosus NFCCI 3818. Biocatalysis and Agricultural Bio technology 9:209−17 doi: 10.1016/j.bcab.2017.01.004 |
[25] |
Kookana RS, Drechsel P, Jamwal P, Vanderzalm J. 2020. Urbanisation and emerging economies: issues and potential solutions for water and food security. The Science of the Total Environment 732:139057 doi: 10.1016/j.scitotenv.2020.139057 |
[26] |
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3:275−90 doi: 10.1016/j.biori.2019.09.001 |
[27] |
miR-Tutusaus JA, Baccar R, Caminal G, Sarrà M. 2018. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Research 138:137−51 doi: 10.1016/j.watres.2018.02.056 |
[28] |
Qin G, Niu Z, Yu J, Li Z, Ma J, et al. 2021. Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267:129205 doi: 10.1016/j.chemosphere.2020.129205 |
[29] |
Lucas D, Barceló D, Rodriguez-Mozaz S. 2016. Removal of pharmaceuticals from wastewater by fungal treatment and reduction of hazard quotients. The Science of the Total Environment 571:909−15 doi: 10.1016/j.scitotenv.2016.07.074 |
[30] |
Huang S, Li S, Wang Z, Lin S, Deng J. 2021. Enzyme degradation mechanism of white rot fungi and its research progress on Refractory Wastewater. E3S Web of Conferences 237:01002 doi: 10.1051/e3sconf/202123701002 |
[31] |
Sharma P, Pandey AK, Kim SH, Singh SP, Chaturvedi P, et al. 2021. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation 24:101826 doi: 10.1016/j.eti.2021.101826 |
[32] |
Lu N, Hu T, Zhai Y, Qin H, Aliyeva J, et al. 2020. Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environmental Research 182:109061 doi: 10.1016/j.envres.2019.109061 |
[33] |
Noormohamadi HR, Fat’hi MR, Ghaedi M, Ghezelbash GR. 2019. Potentiality of white-rot fungi in biosorption of nickel and cadmium: modeling optimization and kinetics study. Chemosphere 216:124−30 doi: 10.1016/j.chemosphere.2018.10.113 |
[34] |
Wollenberg A, Kretzschmar J, Drobot B, Hübner R, Freitag L, et al. 2021. Uranium(VI) bioassociation by different fungi - a comparative study into molecular processes. Journal of Hazardous Materials 411:125068 doi: 10.1016/j.jhazmat.2021.125068 |
[35] |
Sharma KR, Giri R, Sharma RK. 2020. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora. Letters in Applied Microbiology 71(6):637−44 doi: 10.1111/lam.13372 |
[36] |
Pinedo-Rivilla C, Aleu J, Collado I. 2009. Pollutants biodegradation by fungi. Current Organic Chemistry 13(12):1194−214 doi: 10.2174/138527209788921774 |
[37] |
Asemoloye MD, Ahmad R, Jonathan SG. 2017. Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere 187:1−10 doi: 10.1016/j.chemosphere.2017.07.158 |
[38] |
Asemoloye MD, Jonathan SG, Jayeola AA, Ahmad R. 2017. Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. Journal of Environmental Management 200:253−62 doi: 10.1016/j.jenvman.2017.05.090 |
[39] |
Mikhailenko P, Baaj H. 2019. Comparison of chemical and microstructural properties of virgin and reclaimed asphalt pavement binders and their saturate, aromatic, resin, and asphaltene fractions. Energy & Fuels 33:2633−40 doi: 10.1021/acs.energyfuels.8b03414 |
[40] |
Cole GM. 1994. Assessment and remediation of petroleum contaminated site. 1st Edition. Boca Raton: CRC Press. DOI: 10.1201/9781315137810 |
[41] |
Zamel D, Khan AU, Waris A, Ebrahim A, Abd El-Sattar NE. 2023. Nanomaterials advancements for enhanced contaminant removal in wastewater treatment: nanoparticles, nanofibers, and metal-organic frameworks (MOFs). Results in Chemistry 6:101092 doi: 10.1016/j.rechem.2023.101092 |
[42] |
Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, et al. 2017. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biology Reviews 31:61−72 doi: 10.1016/j.fbr.2016.12.001 |
[43] |
Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN. 2015. Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. International Biodeterioration & Biodegradation 103:116−24 doi: 10.1016/j.ibiod.2015.03.030 |
[44] |
Varjani SJ, Upasani VN. 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation 120:71−83 doi: 10.1016/j.ibiod.2017.02.006 |
[45] |
Durairaj P, Malla S, Nadarajan SP, Lee PG, Jung E, et al. 2015. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microbial Cell Factories 14:45 doi: 10.1186/s12934-015-0228-2 |
[46] |
Asemoloye MD, Jonathan SG, Ahmad R. 2019. Synergistic plant-microbes interactions in the rhizosphere: a potential headway for the remediation of hydrocarbon polluted soils. International Journal of Phytoremediation 21:71−83 doi: 10.1080/15226514.2018.1474437 |
[47] |
Shin JY, Bui DC, Lee Y, Nam H, Jung S, et al. 2017. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium gramine arum. Environmental Microbiology 19:2053−67 doi: 10.1111/1462-2920.13730 |
[48] |
Shin J, Kim JE, Lee YW, Son H. 2018. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium gramine arum. Toxins 10(3):112 doi: 10.3390/toxins10030112 |
[49] |
Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, et al. 2014. Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biology and Evolution 6:1620−34 doi: 10.1093/gbe/evu132 |
[50] |
Lamb DC, Waterman MR. 2013. Unusual properties of the cytochrome P450 superfamily. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20120434 doi: 10.1098/rstb.2012.0434 |
[51] |
Meng L, Li H, Bao M, Sun P. 2017. Metabolic pathway for a new strain Pseudomonas synxantha LSH-7’: from chemotaxis to uptake of n-hexadecane. Scientific Reports 7:39068 doi: 10.1038/srep39068 |
[52] |
Prenafeta-Boldú FX, de Hoog GS, Summerbell RC. 2019. Fungal communities in hydrocarbon degradation. In Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology. Handbook of Hydrocarbon and Lipid Microbiology, ed. McGenity T. Cham: Springer. pp. 307−42. DOI: 10.1007/978-3-030-14785-3_8 |
[53] |
Abbasian F, Lockington R, Mallavarapu M, Naidu R. 2015. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Applied Biochemistry and Biotechnology 176:670−99 doi: 10.1007/s12010-015-1603-5 |
[54] |
Morales LT, González-García LN, Orozco MC, Restrepo S, Vives MJ. 2017. The genomic study of an environmental isolate of Scedosporium apiospermum shows its metabolic potential to degrade hydrocarbons. Standards in Genomic Sciences 12:71 doi: 10.1186/s40793-017-0287-6 |
[55] |
Young D, Rice J, Martin R, Lindquist E, Lipzen A, et al. 2015. Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS One 10:e0130381 doi: 10.1371/journal.pone.0130381 |
[56] |
Marco-Urrea E, Gabarrell X, Caminal G, Vicent T, Adinarayana Reddy C. 2008. Aerobic degradation by white-rot fungi of trichloroethylene (TCE) and mixtures of TCE and perchloroethylene (PCE). Journal of Chemical Technology & Biotechnology 83:1190−96 doi: 10.1002/jctb.1914 |
[57] |
Marco-Urrea E, Aranda E, Caminal G, Guillén F. 2009. Induction of hydroxyl radical production in Trametes versicolor to degrade recalcitrant chlorinated hydrocarbons. Bioresource Technology 100:5757−62 doi: 10.1016/j.biortech.2009.06.078 |
[58] |
Daccò C, Girometta C, Asemoloye MD, Carpani G, Picco AM, et al. 2020. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. International Biodeterioration & Biodegradation 147:104866 doi: 10.1016/j.ibiod.2019.104866 |
[59] |
Lawton LA, Robertson PKJ. 1999. Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews 28:217−24 doi: 10.1039/A805416I |
[60] |
Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F. 2009. Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal. Applied and Environmental Microbiology 75(12):3954−62 doi: 10.1128/AEM.02138-08 |
[61] |
Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F. 2009. Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Applied and Environmental Microbiology 75(12):3944−53 doi: 10.1128/AEM.02137-08 |
[62] |
Lundell TK, Mäkelä MR, Hildén K. 2010. Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. Journal of Basic Microbiology 50:5−20 doi: 10.1002/jobm.200900338 |
[63] |
Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, et al. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA and Cell Biology 12:1−51 doi: 10.1089/dna.1993.12.1 |
[64] |
Santos HF, Carmo FL, Paes JES, Rosado AS, Peixoto RS. 2011. Bioremediation of mangroves impacted by petroleum. Water, Air, & Soil Pollution 216:329−50 doi: 10.1007/s11270-010-0536-4 |
[65] |
Mbadinga SM, Wang LY, Zhou L, Liu JF, Gu JD, et al. 2011. Microbial communities involved in anaerobic degradation of alkanes. International Biodeterioration & Biodegradation 65:1−13 doi: 10.1016/j.ibiod.2010.11.009 |
[66] |
Hosoda A, Kasai Y, Hamamura N, Takahata Y, Watanabe K. 2005. Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation 16:591−601 doi: 10.1007/s10532-005-0826-5 |
[67] |
Dar MA, Kaushik G, Villareal Chiu JF. 2020. Pollution status and biodegradation of organophosphate pesticides in the environment. In Abatement of environmental pollutants, eds. Singh P, Kumar A, Borthakur A. Amsterdam, Netherlands: Elsevier. pp. 25–66. DOI: 10.1016/B978-0-12-818095-2.00002-3 |
[68] |
Singh B, Mandal K. 2013. Environmental impact of pesticides belonging to newer chemistry. In Integrated Pest Management, ed. Dhawan AK, Singh B, Brar-Bhullar M, Arora R. Jodhpur: Scientific Publishers. pp. 152–90. https://researchoutreach.org/wp-content/uploads/2020/09/Surendra-K-Dara-High-Res-DPS.pdf |
[69] |
SLarson SJ, Capel PD, Majewski M. 2010. Pesticides in surface waters: distribution, trends, and governing factors, ed. Larson SJ. Boca Raton: CRC Press. doi: 10.1201/9780429062797 |
[70] |
Trajkovska S, Mbaye M, Gaye Seye MD, Aaron JJ, Chevreuil M, et al. 2009. Toxicological study of pesticides in air and precipitations of Paris by means of a bioluminescence method. Analytical and Bioanalytical Chemistry 394:1099−106 doi: 10.1007/s00216-009-2783-z |
[71] |
Wilen CA. 2014. Pesticides: safe and effective use in the home landscape. Division of Agriculture and Natural Resources. University of California Statewide IPM Program. 6 pp. https://anrcatalog.ucanr.edu/Details.aspx?itemNo=74126 |
[72] |
Spina F, Cecchi G, Landinez-Torres A, Pecoraro L, Russo F, et al. 2018. Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology 152:474−88 doi: 10.1080/11263504.2018.1445130 |
[73] |
Díaz E. 2004. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology 7:173−80 |
[74] |
van Hamme JD. 2004. Bioavailability and biodegradation of organic pollutants – a microbial perspective. In Biodegradation and bioremediation. Soil Biology, ed. Singh A, Ward OP. vol 2. Berlin, Heidelberg: Springer. pp. 37–56. DOI: 10.1007/978-3-662-06066-7_3 |
[75] |
Fenner K, Canonica S, Wackett LP, Elsner M. 2013. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752−58 doi: 10.1126/science.1236281 |
[76] |
Jochimsen B, Lolle S, McSorley FR, Nabi M, Stougaard J, et al. 2011. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway. Proceedings of the National Academy of Sciences of the United States of America 108:11393−98 doi: 10.1073/pnas.1104922108 |
[77] |
Trincone A. 2010. Potential biocatalysts originating from sea environments. Journal of Molecular Catalysis B: Enzymatic 66:241−56 doi: 10.1016/j.molcatb.2010.06.004 |
[78] |
Bigley AN, Raushel FM. 2013. Catalytic mechanisms for phosphotriesterases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1834:443−53 doi: 10.1016/j.bbapap.2012.04.004 |
[79] |
Bonugli-Santos RC, Durrant LR, da Silva M, Sette LD. 2010. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology 46:32−37 doi: 10.1016/j.enzmictec.2009.07.014 |
[80] |
dos Santos VMR, Donnici CL, DaCosta JBN, Caixeiro JMR. 2007. Organophosphorus pentavalent compounds: history, synthetic methods of preparation and application as insecticides and antitumor agents. Química Nova 30:159−70 doi: 10.1590/s0100-40422007000100028 |
[81] |
Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, et al. 2017. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences 51:52−74 doi: 10.1016/j.jes.2016.08.023 |