[1]

Yaacob MF, Murata A, Nor NHM, Jesse FFA, Yahya MFZR. 2021. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University - Science 33:101225

doi: 10.1016/j.jksus.2020.10.022
[2]

Kamaruzzaman ANA, Mulok TETZ, Nor NHM, Yahya MFZR. 2022. FTIR spectral changes in Candida albicans biofilm following exposure to antifungals. Malaysian Applied Biology 51(4):57−66

doi: 10.55230/mabjournal.v51i4.11
[3]

Johari NA, Aazmi MS, Yahya MFZR. 2023. FTIR spectroscopic study of inhibition of chloroxylenol-based disinfectant against Salmonella enterica serovar Thyphimurium biofilm. Malaysian Applied Biology 52(2):97−107

doi: 10.55230/mabjournal.v52i2.2614
[4]

Sehgal S, Aggarwal S, Akanksha, Khakha HP, Kaushik P. 2024. Biofilms on food contact surfaces: current interventions and emerging technologies. In Microbial Biotechnology in the Food Industry, eds. Ahmad F, Mohammad ZH, Ibrahim SA, Zaidi S. Cham: Springer. pp. 167−85. doi: 10.1007/978-3-031-51417-3_8

[5]

Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. 2024. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Critical Reviews in Food Science and Nutrition 64(6):1736−63

doi: 10.1080/10408398.2022.2119201
[6]

Yahya MFZR, Alias Z, Karsani SA. 2017. Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. The Protein Journal 36(4):286−98

doi: 10.1007/s10930-017-9719-9
[7]

Othman NA, Yahya MFZR. 2019. In silico analysis of essential and non-homologous proteins in Salmonella typhimurium biofilm. Journal of Physics: Conference Series 1349:012133

doi: 10.1088/1742-6596/1349/1/012133
[8]

Zawawi WMAWM, Ibrahim MSA, Rahmad N, Hamid UMA, Yahya MFZR. 2020. Proteomic analysis of Pseudomonas aeruginosa biofilm treated with Chromolaena odorata extracts. Malaysian Journal of Microbiology 16(2):124−33

doi: 10.21161/mjm.190512
[9]

Isa SFM, Hamid UMA, Yahya MFZR. 2022. Treatment with the combined antimicrobials triggers proteomic changes in P. aeruginosa-C. albicans polyspecies biofilms. Science Asia 48(2):215−22

doi: 10.2306/scienceasia1513-1874.2022.020
[10]

Rashid SAA, Yaacob MF, Aazmi MS, Jesse FFA, Yahya MFZR. 2022. Inhibition of Corynebacterium pseudotuberculosis biofilm by DNA synthesis and protein synthesis inhibitors. Journal of Sustainability Science and Management 17(4):49−56

doi: 10.46754/jssm.2022.4.004
[11]

Zakaria NFS, Yahya MFZR, Jamil NM. 2023. Multiple bacterial strategies to survive antibiotic pressure: A review. Preprints 2023040591

[12]

Parul, Singh AP. 2024. Potential use of biotechnological tools to eradicate microbial biofilms. In Microbial Biotechnology in the Food Industry, eds. Ahmad F, Mohammad ZH, Ibrahim SA, Zaidi S. Cham: Springer. pp. 447–70. doi: 10.1007/978-3-031-51417-3_18

[13]

Fatima A, Saleem M, Nawaz S, Khalid L, Riaz S, et al. 2023. Prevalence and antibiotics resistance status of Salmonella in raw meat consumed in various areas of Lahore, Pakistan. Scientific Reports 13:22205

doi: 10.1038/s41598-023-49487-2
[14]

Nunes B, Barata AR, Oliveira R, Guedes H, Almeida C, et al. 2024. Occurrence and diversity of Listeria monocytogenes in Portuguese dairy farms. The Microbe 3:100063

doi: 10.1016/j.microb.2024.100063
[15]

Beshiru A, Uwhuba KE. 2023. Detection and characterization of Listeria monocytogenes from locally processed fermented foods in Ethiope West, Delta State, Nigeria. International Journal of Surgery 25(3):483−93

doi: 10.4314/ijs.v25i3.12
[16]

Cardamone C, Castello A, Oliveri G, Costa A, Sciortino S, et al. 2024. Staphylococcal food poisoning outbreaks occurred in Sicily (Italy) from 2009 to 2016. Italian Journal of Food Safety 13(2):11667

doi: 10.4081/ijfs.2024.11667
[17]

Seow WL, Mahyudin NA, Amin-Nordin S, Radu S, Abdul-Mutalib NA. 2021. Antimicrobial resistance of Staphylococcus aureus among cooked food and food handlers associated with their occupational information in Klang Valley. Malaysia. Food Control 124:107872

doi: 10.1016/j.foodcont.2021.107872
[18]

Liu M, Ding Y, Ye Q, Wu S, Gu Q, et al. 2024. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Critical Reviews in Food Science and Nutrition 1:1−15

doi: 10.1080/10408398.2024.2322141
[19]

Rather MA, Gupta K, Bardhan P, Borah M, Sarkar A, et al. 2021. Microbial biofilm: A matter of grave concern for human health and food industry. Journal of Basic Microbiology 61(5):380−95

doi: 10.1002/jobm.202000678
[20]

Araújo EA, de Andrade NJ, da Silva LHM, de Carvalho AF, de Sá Silva CA, et al. 2010. Control of microbial adhesion as a strategy for food and bioprocess technology. Food and Bioprocess Technology 3:321−32

doi: 10.1007/s11947-009-0290-z
[21]

Xiong F, Wen D, Li Q. 2022. Calcium-mediated regulation promotes the biofilm formation of two novel pyridine-degrading bacteria. Frontiers in Environmental Science 10:815528

doi: 10.3389/fenvs.2022.815528
[22]

Zore A, Bezek K, Jevšnik M, Abram A, Runko V, et al. 2020. Bacterial adhesion rate on food grade ceramics and Teflon as kitchen worktop surfaces. International Journal of Food Microbiology 332:108764

doi: 10.1016/j.ijfoodmicro.2020.108764
[23]

Dhivya R, Rajakrishnapriya VC, Sruthi K, Chidanand DV, Sunil CK, Rawson A. 2022. Biofilm combating in the food industry: Overview, non-thermal approaches, and mechanisms. Journal of Food Processing and Preservation 46(10):e16282

doi: 10.1111/jfpp.16282
[24]

Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. 2021. Microbial biofilms in the food industry—A comprehensive review. International Journal of Environmental Research and Public Health 18(4):2014

doi: 10.3390/ijerph18042014
[25]

Duanis-Assaf D, Steinberg D, Chai Y, Shemesh M. 2015. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis. Frontiers in Microbiology 6:1517

doi: 10.3389/fmicb.2015.01517
[26]

Miller, MB, Bassler BL. 2001. Quorum sensing in bacteria. Annual Review in Microbiology 55:165−99

doi: 10.1146/annurev.micro.55.1.165
[27]

Wu RA, Feng J, Yue M, Liu D, Ding T. 2024. Overuse of food-grade disinfectants threatens a global spread of antimicrobial-resistant bacteria. Critical Reviews in Food Science and Nutrition 64:6870−79

doi: 10.1080/10408398.2023.2176814
[28]

Mishra I, Mishra R, Dubey A, Dhakad PK. 2024. A perspective on various facets of nanoemulsions and its commercial utilities. ASSAY and Drug Development Technologies 22(3):97−117

doi: 10.1089/adt.2023.042
[29]

Kadiri F, Ezaouine A, Blaghen M, Bennis F, Chegdani F. 2024. Antibiofilm potential of biosurfactant produced by Bacillus aerius against pathogen bacteria. Biocatalysis and Agricultural Biotechnology 56:102995

doi: 10.1016/j.bcab.2023.102995
[30]

Martins VF, Pintado ME, Morais RM, Morais AM. 2024. Recent highlights in sustainable bio-based edible films and coatings for fruit and vegetable applications. Foods 13(2):318

doi: 10.3390/foods13020318
[31]

Wani SM, Gull A, Ahad T, Malik AR, Ganaie TA, et al. 2021. Effect of gum arabic, xanthan and carrageenan coatings containing antimicrobial agent on postharvest quality of strawberry: assessing the physicochemical, enzyme activity and bioactive properties. International Journal of Biological Macromolecules 183:2100−8

doi: 10.1016/j.ijbiomac.2021.06.008
[32]

Duong NTC, Uthairatanakij A, Laohakunjit N, Jitareerat P, Kaisangsri N. 2022. An innovative single step of cross-linked alginate-based edible coating for maintaining postharvest quality and reducing chilling injury in rose apple cv 'Tubtimchan' (Syzygium Samarangenese). Scientia Horticulturae 292:110648

doi: 10.1016/j.scienta.2021.110648
[33]

Kaur J, Singh J, Rasane P, Gupta P, Kaur S, et al. 2023. Natural additives as active components in edible films and coatings. Food Bioscience 53:102689

doi: 10.1016/j.fbio.2023.102689
[34]

Das SK, Vishakha K, Das S, Ganguli A. 2023. Antibacterial and antibiofilm activities of nanoemulsion coating prepared by using caraway oil and chitosan prolongs the shelf life and quality of bananas. Applied Food Research 3:100300

doi: 10.1016/j.afres.2023.100300
[35]

Johnson AM, Thamburaj S, Etikala A, Sarma C, Mummaleti G, et al. 2022. Evaluation of antimicrobial and antibiofilm properties of chitosan edible coating with plant extracts against Salmonella and E. coli isolated from chicken. Journal of Food Processing and Pre servation 46(7):e16653

doi: 10.1111/jfpp.16653
[36]

Du T, Li X, Wang S, Su Z, Sun H, et al. 2023. Phytochemicals-based edible coating for photodynamic preservation of fresh-cut apples. Food Research International 163:112293

doi: 10.1016/j.foodres.2022.112293
[37]

Tripathi S, Mishra S. 2021. Antioxidant, antibacterial analysis of pectin isolated from banana peel and its application in edible coating of freshly made mozzarella cheese. Asian Food Science Journal 20(7):82−92

doi: 10.9734/afsj/2021/v20i730324
[38]

La DD, Nguyen-Tri P, Le KH, Nguyen PTM, Nguyen MDB, et al. 2021. Effects of antibacterial ZnO nanoparticles on the performance of a chitosan/gum arabic edible coating for post-harvest banana preservation. Progress in Organic Coatings 151:106057

doi: 10.1016/j.porgcoat.2020.106057
[39]

Amarillas L, Lightbourn-Rojas L, Angulo-Gaxiola AK, Basilio Heredia J, González-Robles A, et al. 2018. The antibacterial effect of chitosan-based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157:H7 on the surface of tomatoes. Journal of Food Safety 38(6):e12571

doi: 10.1111/jfs.12571
[40]

Yemiş GP, Candoğan K. 2017. Antibacterial activity of soy edible coatings incorporated with thyme and oregano essential oils on beef against pathogenic bacteria. Food science and biotechnology 26:1113−21

doi: 10.1007/s10068-017-0136-9
[41]

Valliammai A, Selvaraj A, Mathumitha P, Aravindraja C, Pandian SK. 2021. Polymeric antibiofilm coating comprising synergistic combination of citral and thymol prevents methicillin-resistant Staphylococcus aureus biofilm formation on titanium. Materials Science and Engineering: C 121:111863

doi: 10.1016/j.msec.2021.111863
[42]

Acosta S, Ibañez-Fonseca A, Aparicio C, Rodríguez-Cabello JC. 2020. Antibiofilm coatings based on protein-engineered polymers and antimicrobial peptides for preventing implant-associated infections. Biomaterials Science Journal 8(10):2866−77

doi: 10.1039/D0BM00155D
[43]

Esteves GM, Esteves J, Resende M, Mendes L, Azevedo AS. 2022. Antimicrobial and antibiofilm coating of dental implants—past and new perspectives. Antibiotics 11(2):235

doi: 10.3390/antibiotics11020235
[44]

Sarvari R, Naghili B, Agbolaghi S, Abbaspoor S, Bannazadeh Baghi H, et al. 2023. Organic/polymeric antibiofilm coatings for surface modification of medical devices. International Journal of Polymeric Materials and Polymerics Biomaterials 72(11):867−908

doi: 10.1080/00914037.2022.2066668
[45]

Ogawa A, Tahori A, Yano M, Hirobe S, Terada S, et al. 2023. Antibiofilm property and biocompatibility of siloxane-based polymer coatings applied to biomaterials. Materials 6(23):7399

doi: 10.3390/ma16237399
[46]

Massoumi B, Sarvari R, Fakhri E. 2024. Polyzwitterion coating based on PDMAEMA-block-PAAc for catheters with antibiofilm activities. International Journal of Polymeric Materials and Polymerics Biomaterials 00:1−8

doi: 10.1080/00914037.2024.2317337
[47]

DeFlorio W, Liu S, Arcot Y, Ulugun B, Wang X, et al. 2023. Durable superhydrophobic coatings for stainless-steel: An effective defense against Escherichia coli and Listeria fouling in the post-harvest environment. Food Research International 173:113227

doi: 10.1016/j.foodres.2023.113227
[48]

Qi S, Kiratzis I, Adoni P, Tuekprakhon A, Hill HJ, et al. 2023. Porous cellulose thin films as sustainable and effective antimicrobial surface coatings. ACS Applied Materials & Interfaces 15(17):20638−48

doi: 10.1021/acsami.2c23251
[49]

Piktel E, Suprewicz Ł, Depciuch J, Chmielewska S, Skłodowski K, et al. 2021. Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Scientific Reports 11(1):12546

doi: 10.1038/s41598-021-91847-3
[50]

Fontecha-Umaña F, Ríos-Castillo AG, Ripolles-Avila C, Rodríguez-Jerez JJ. 2020. Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods 9(4):442

doi: 10.3390/foods9040442
[51]

Li M, Gao L, Schlaich C, Zhang J, Donskyi IS, et al. 2017. Construction of functional coatings with durable and broad-spectrum antibacterial potential based on mussel-inspired dendritic polyglycerol and in situ-formed copper nanoparticles. ACS Applied Materials & Interfaces 9(40):35411−18

doi: 10.1021/acsami.7b10541
[52]

Dogra N, Choudhary R, Kohli P, Haddock JD, Makwana S, et al. 2015. Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces. Journal of Agricultural and Food Chemistry 63(9):2557−65

doi: 10.1021/jf505442w
[53]

Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Jawahar MJ, et al. 2022. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Chemosphere 307:135713

doi: 10.1016/j.chemosphere.2022.135713
[54]

Swapana N. 2024. Nanosensors for food quality and detection of pathogens, chemicals, and pesticides. In Nanotechnology and Nanomaterials in the Agri-Food Industries, eds. Singh P, Khare P, Mishra D, Bilal M, Sillanpää M. Amsterdam: Elsevier. pp. 341−60. 10.1016/b978-0-323-99682-2.00008-6

[55]

Patel G, Pillai V, Bhatt P, Mohammad S. 2020. Application of nanosensors in the food industry. In Nanosensors for smart cities, eds. Han B, Tomer VK, Nguyen TA, Farmani A, Singh PK. Amsterdam: Elsevier. pp. 355−68. doi: 10.1016/b978-0-12-819870-4.00020-7

[56]

Pu H, Xu Y, Sun DW, Wei Q, Li X. 2021. Optical nanosensors for biofilm detection in the food industry: Principles, applications and challenges. Critical Reviews in Food Science and Nutrition 61(13):2107−24

doi: 10.1080/10408398.2020.1808877
[57]

Duan N, Shen M, Wu S, Zhao C, Ma X, et al. 2017. Graphene oxide wrapped Fe3O4@Au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy. Microchimica Acta 184(8):2653−60

doi: 10.1007/s00604-017-2298-9
[58]

Nor NHM, Anuar NA, Talik NA, Wan WAT, Abdullah KK, et al. 2023. Effects of high-energy electron beam irradiation on the structure, composition and morphological properties of graphene nanoplatelet films. Sains Malaysiana 52(10):2955−70

doi: 10.17576/jsm-2023-5210-17
[59]

Song J, Ali A, Ma Y, Li Y. 2023. A graphene microelectrode array based microfluidic device for in situ continuous monitoring of biofilms. Nanoscale Advances 5(18):4681−86

doi: 10.1039/D3NA00482A
[60]

Liu M, Zhang Q, Brennan JD, Li Y. 2018. Graphene DNAzyme-based fluorescent biosensor for Escherichia coli detection. MRS Communications 8:687−94

doi: 10.1557/mrc.2018.97
[61]

Chelliah R, Wei S, Daliri EBM, Rubab M, Elahi F, et al. 2021. Development of nanosensors based intelligent packaging systems: food quality and medicine. Nanomaterials 11(6):1515

doi: 10.3390/nano11061515
[62]

Plekhanova Y, Tarasov S, Reshetilov A. 2021. Use of PEDOT: PSS/Graphene/Nafion composite in biosensors based on acetic acid bacteria. Biosensors 11(9):332

doi: 10.3390/bios11090332
[63]

Udowo VM, Unimuke TO, Louis H, Udoh II, Edet HO, et al. 2024. Enhanced sensing of bacteria biomarkers by ZnO and graphene oxide decorated PEDOT film. Journal of Biomolecular Structure and Dynamics 00:1−14

doi: 10.1080/07391102.2024.2328740
[64]

Kromer C, Schwibbert K, Gadicherla AK, Thiele D, Nirmalananthan-Budau N, et al. 2022. Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor. Scientific reports 12:9823

doi: 10.1038/s41598-022-13518-1
[65]

Wang Q, Yang Q, Wu W. 2020. Graphene-based steganographic aptasensor for information computing and monitoring toxins of biofilm in food. Frontiers in microbiology 10:3139

doi: 10.3389/fmicb.2019.03139
[66]

Yeor-Davidi E, Zverzhinetsky M, Krivitsky V, Patolsky F. 2020. Real-time monitoring of bacterial biofilms metabolic activity by a redox-reactive nanosensors array. Journal of Nanobiotechnology 18:81

doi: 10.1186/s12951-020-00637-y
[67]

Funari R, Bhalla N, Chu KY, SöSöderström B, Shen AQ. 2018. Nanoplasmonics for real-time and label-free monitoring of microbial biofilm formation. ACS Sensors 3(8):1499−509

doi: 10.1021/acssensors.8b00287
[68]

Li X, Kong H, Mout R, Saha K, Moyano DF, et al. 2014. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor. ACS Nano 8(12):12014−19

doi: 10.1021/nn505753s
[69]

Vijayakumar G, Venkatesan SA, Kannan VA, Perumal S. 2023. Detection of food toxins, pathogens, and microorganisms using nanotechnology-based sensors. In Nanotechnology Applications for Food Safety and Quality Monitoring, eds. Sharma A, Vijayakumar PS, Prabhakar EPK, Kumar R. Amsterdam: Elsevier. pp. 155−70. doi: 10.1016/b978-0-323-85791-8.00022-7

[70]

He H, Sun DW, Wu Z, Pu H, Wei Q. 2022. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Science & Technology 19:243−56

doi: 10.1016/j.jpgs.2021.11.029
[71]

Das J, Mishra HN. 2023. A comprehensive review of the spoilage of shrimp and advances in various indicators/sensors for shrimp spoilage monitoring. Food Research International 173:113270

doi: 10.1016/j.foodres.2023.113270