[1]

Lucena JJ, Hernandez-Apaolaza L. 2017. Iron nutrition in plants: an overview. Plant and Soil 418:1−4

doi: 10.1007/s11104-017-3316-8
[2]

Schmidt W, Thomine S, Buckhout TJ. 2019. Iron nutrition and interactions in plants. Frontiers in Plant Science 10:1670

doi: 10.3389/fpls.2019.01670
[3]

Rombolà AD, Tagliavini M. 2006. Iron nutrition of fruit tree crops. In Iron Nutrition in Plants and Rhizospheric Microorganisms, eds Barton LL, Abadia J. Dordrecht: Springer Netherlands. pp. 61–83. doi: 10.1007/1-4020-4743-6_3

[4]

Cai DB, Sun XY, Zhang YP, Yang SQ, Zhang J, et al. 2023. Genome-wide identification and expression analysis of SnRK2 gene family in common bean (Phaseolus vulgaris L.) in response to abiotic stress. Biologia 78(8):2013−27

doi: 10.1007/s11756-023-01343-4
[5]

Wen D, Sun S, Yang W, Zhang L, Liu S, et al. 2019. Overexpression of S-nitrosoglutathione reductase alleviated iron-deficiency stress by regulating iron distribution and redox homeostasis. Journal of Plant Physiology 237:1−11

doi: 10.1016/j.jplph.2019.03.007
[6]

De Nisi P, Vigani G, Dell'Orto M, Zocchi G. 2012. Application of the split root technique to study iron uptake in cucumber plants. Plant Physiology and Biochemistry 57:168−74

doi: 10.1016/j.plaphy.2012.05.022
[7]

Zhang Q, Wang M, Hu J, Wang W, Fu X, et al. 2015. PtrABF of Poncirus trifoliata functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis. Journal of Experimental Botany 66(19):5911−27

doi: 10.1093/jxb/erv301
[8]

Du X, Zhao X, Li X, Guo C, Lu W, et al. 2013. Overexpression of TaSRK2C1, a wheat SNF1-related protein kinase 2 gene, increases tolerance to dehydration, salt, and low temperature in transgenic tobacco. Plant Molecular Biology Reporter 31:810−21

doi: 10.1007/s11105-012-0548-x
[9]

Song X, Yu X, Hori C, Demura T, Ohtani M, et al. 2016. Heterologous overexpression of poplar SnRK2 genes enhanced salt stress tolerance in Arabidopsis thaliana. Frontiers in Plant Science 7:612

doi: 10.3389/fpls.2016.00612
[10]

Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell 14(12):3089−99

doi: 10.1105/tpc.007906
[11]

Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, et al. 2002. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant and Cell Physiology 43(12):1473−83

doi: 10.1093/pcp/pcf188
[12]

Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, et al. 2009. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462(7273):660−64

doi: 10.1038/nature08599
[13]

Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, et al. 2005. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. The Plant Journal 44(6):939−49

doi: 10.1111/j.1365-313X.2005.02583.x
[14]

Mizoguchi M, Umezawa T, Nakashima K, Kidokoro S, Takasaki H, et al. 2010. Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant and Cell Physiology 51(5):842−47

doi: 10.1093/pcp/pcq041
[15]

Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. 2004. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 101(49):17306−11

doi: 10.1073/pnas.0407758101
[16]

McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, Van Der Does D, et al. 2012. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. The Plant Journal 72(3):436−49

doi: 10.1111/j.1365-313X.2012.05089.x
[17]

Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP. 2007. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proceedings of the National Academy of Sciences of the United States of America 104(15):6460−65

doi: 10.1073/pnas.0610208104
[18]

Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, et al. 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant and Cell Physiology 50(7):1345−63

doi: 10.1093/pcp/pcp083
[19]

Wang Y, Hu Y, Zhu Y, Baloch AW, Jia X, et al. 2018. Transcriptional and physiological analyses of short-term Iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis. BMC Genomics 19(1):461

doi: 10.1186/s12864-018-4846-z
[20]

Guo A, Hu Y, Shi M, Wang H, Wu Y, et al. 2020. Effects of iron deficiency and exogenous sucrose on the intermediates of chlorophyll biosynthesis in Malus halliana. PLoS One 15(5):e0232694

doi: 10.1371/journal.pone.0232694
[21]

Le CTT, Brumbarova T, Ivanov R, Stoof C, Weber E, et al. 2016. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) linking iron deficiency and oxidative stress responses. Plant Physiology 170(1):540−57

doi: 10.1104/pp.15.01589
[22]

Han ZH, Wang Q, Shen T. 1994. Comparison of some physiological and biochemical characteristics between iron-efficient and iron-inefficient species in the genus malus. Journal of Plant Nutrition 17:1257−64

doi: 10.1080/01904169409364803
[23]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25(4):402−8

doi: 10.1006/meth.2001.1262
[24]

Sun B, Zhang F, Xiao N, Jiang M, Yuan Q, et al. 2018. An efficient mesophyll protoplast isolation, purification and PEG-mediated transient gene expression for subcellular localization in Chinese kale. Scientia Horticulturae 241:187−93

doi: 10.1016/j.scienta.2018.07.001
[25]

Hu DG, Sun MH, Sun CH, Liu X, Zhang QY, et al. 2015. Conserved vacuolar H+-ATPase subunit B1 improves salt stress tolerance in apple calli and tomato plants. Scientia Horticulturae 197:107−16

doi: 10.1016/j.scienta.2015.09.019
[26]

Wang WX, Zhang ZX, Wang X, Han C, Dong YJ, et al. 2023. Functional identification of ANR genes in apple (Malus halliana) that reduce saline-alkali stress tolerance. Plant Biology 25(6):892−901

doi: 10.1111/plb.13559
[27]

Hu DG, Li M, Luo H, Dong QL, Yao YX, et al. 2012. Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Reports 31:713−22

doi: 10.1007/s00299-011-1189-5
[28]

Cheng L, Zhao T, Wu YX, Wang H, Zhang ZX, et al. 2020. Identification of AP2/ERF genes in apple (Malus × domestica) and demonstration that MdERF017 enhances iron deficiency tolerance. Plant Cell, Tissue and Organ Culture (PCTOC) 143(2):465−82

doi: 10.1007/s11240-020-01925-z
[29]

Ferreira Júnior DC, Gaion LA, Sousa Júnior GS, Santos DMM, Carvalho RF. 2018. Drought-induced proline synthesis depends on root-to-shoot communication mediated by light perception. Acta Physiologiae Plantarum 40:15

doi: 10.1007/s11738-017-2591-6
[30]

Zhao T, Ling HQ. 2007. Effects of pH and nitrogen forms on expression profiles of genes involved in iron homeostasis in tomato. Plant, Cell & Environment 30(4):518−27

doi: 10.1111/j.1365-3040.2007.01638.x
[31]

Gu J. 2021. Biological function of blueberry plasma membrane H +-ATPases gene family in response to non-acidic inter-root stress. Thesis. Zhejiang Normal University, China.

[32]

Sharma SS, Kumar V. 2002. Responses of wild type and abscisic acid mutants of Arabidopsis thaliana to cadmium. Journal of Plant Physiology 159(12):1323−27

doi: 10.1078/0176-1617-00601
[33]

Curie C, Briat JF. 2003. Iron transport and signaling in plants. Annual Review of Plant Biology 54(1):183−206

doi: 10.1146/annurev.arplant.54.031902.135018
[34]

Conte SS, Walker EL. 2011. Transporters contributing to iron trafficking in plants. Molecular Plant 4(3):464−76

doi: 10.1093/mp/ssr015
[35]

Guerinot ML, Yi Y. 1994. Iron: nutritious, noxious, and not readily available. Plant Physiology 104(3):815−20

doi: 10.1104/pp.104.3.815
[36]

Qin Y, Shao Y, Liang D, Zou Y. 2016. Research on cloning, expression and transformation of rowan SnRK2.4 gene. Journal of Northwest A&F University (Natural Science Edition) 44:105−12,120

doi: 10.13207/j.cnki.jnwafu.2016.02.015
[37]

Jia M, Li X, Wang W, Li T, Dai Z, et al. 2022. SnRK2 subfamily I protein kinases regulate ethylene biosynthesis by phosphorylating HB transcription factors to induce ACO1 expression in apple. New Phytologist 234(4):1262−77

doi: 10.1111/nph.18040
[38]

Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. 2004. Differential activation of the rice sucrose nonfermenting1–related protein kinase2 family by hyperosmotic stress and abscisic acid. The Plant Cell 16(5):1163−77

doi: 10.1105/tpc.019943
[39]

Diédhiou CJ, Popova OV, Dietz KJ, Golldack D. 2008. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biology 8(1):49

doi: 10.1186/1471-2229-8-49
[40]

Zhang H, Mao X, Jing R, Chang X, Xie H. 2011. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. Journal of Experimental Botany 62(3):975−88

doi: 10.1093/jxb/erq328
[41]

Huai J, Wang M, He J, Zheng J, Dong Z, et al. 2008. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Reports 27:1861−68

doi: 10.1007/s00299-008-0608-8
[42]

Monks DE, Aghoram K, Courtney PD, DeWald DB, Dewey RE. 2001. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. The Plant Cell 13(5):1205−19

doi: 10.1105/tpc.13.5.1205
[43]

Yoon HW, Kim MC, Shin PG, Kim JS, Kim CY, et al. 1997. Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus. Molecular and General Genetics MGG 255:359−71

doi: 10.1007/s004380050507
[44]

Park YS, Hong SW, Oh SA, Kwak JM, Lee HH, et al. 1993. Two putative protein kinases from Arabidopsis thaliana contain highly acidic domains. Plant Molecular Biology 22:615−24

doi: 10.1007/BF00047402
[45]

Suliman MS, Alhubaity AJ. 2020. Effect of spraying zinc element fertilizer on the growth and yield of green pea (Pisum sativum L.) seeds. Plant Archives 20(Supplement 1):2553−64

[46]

Zhao Q, Ren YR, Wang QJ, Yao YX, You CX, et al. 2016. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple. Plant Biotechnology Journal 14(7):1633−45

doi: 10.1111/pbi.12526
[47]

Lin Z, Zhu P, Gao L, Chen X, Li M, et al. 2024. Recent advances in understanding the regulatory mechanism of plasma membrane H+-ATPase through the brassinosteroid signaling pathway. Plant and Cell Physiology 00:pcae014

doi: 10.1093/pcp/pcae014
[48]

Sperdouli I, Moustakas M. 2012. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology 169(6):577−85

doi: 10.1016/j.jplph.2011.12.015
[49]

Zhang Z, Huang W, Zhao L, Xiao L, Huang H. 2024. Integrated metabolome and transcriptome reveals the mechanism of the flower coloration in cashew Anacardium occidentale. Scientia Horticulturae 324:112617

doi: 10.1016/j.scienta.2023.112617
[50]

Zhao M, Shi CL, Li J. 2024. Abscission cues generated within the abscising organ and perceived by the abscission zone in woody fruit crops. Fruit Research 4:e014

doi: 10.48130/frures-0024-0007