[1]

Gomashe SS. 2017. Barnyard millet: present status and future thrust areas. In Millets and Sorghum: Biology and Genetic Improvement, ed. Patil JV. Hoboken: John Wiley & Sons, Inc. pp. 184−98. doi: 10.1002/9781119130765.ch7

[2]

ICAR-Indian Institute of Millets Research. 2018. Millets Annual Report 2017−2018. Report. Hyderabad: Indian Institute of Millets Research. 164 pp. www.millets.res.in/annual_report/ar17-18.pdf

[3]

Durairajan MB, Sundararajan VV, Kannan G, Paul BM, Muniyandi K, et al. 2024. Elicitation of nutritional, antioxidant, and antidiabetic potential of barnyard millet (Echinochloa esculenta (A. Braun) H. Scholz) sprouts and microgreens through in vitro bio-accessibility assessment. Food Chemistry 441:138282

doi: 10.1016/j.foodchem.2023.138282
[4]

Rajesh M, Shivaraj G, Ambethgar V, Vanniarajan C. 2024. Breeding barnyard millet for biotic stress resistance. In Genetic Improvement of Small Millets, eds Mishra S, Kumar S, Srivastava RC. Singapore: Springer. pp. 513–28. doi: 10.1007/978-981-99-7232-6_25

[5]

Padhiyar SM, Kheni J, Bhatt SB, Tomar RS. 2024. Genetic improvement of barnyard millet through advanced biotechnological methods. In Genetic improvement of Small Millets, eds Mishra S, Kumar S, Srivastava RC. pp. 529–53. Singapore: Springer. doi: 10.1007/978-981-99-7232-6_26

[6]

Mittal V, Kumar S, Gupta R, Panghal A, Kumar N. 2024. Review on millets dehulling and pearling technologies and machinery. Journal of Food Process Engineering 47(5):e14611

doi: 10.1111/jfpe.14611
[7]

Sood S, Khulbe RK, Gupta AK, Agrawal PK, Upadhyaya HD, et al. 2015. Barnyard millet – a potential food and feed crop of future. Plant Breeding 134:135−47

doi: 10.1111/pbr.12243
[8]

Padhiyar SM, Kheni J, Bhatt SB, Desai H, Tomar RS. 2024. Transcriptome profiling of barnyard millet (Echinochloa frumentacea L.) during grain development to reveal the genomic insights into iron accumulation. Heliyon 10:e30925

doi: 10.1016/j.heliyon.2024.e30925
[9]

Renganathan VG, Vanniarajan C, Senthil N, Nirmalakumari A, Karthikeyan A, et al. 2021. Genetics and molecular markers for anthocyanin pigmentation in barnyard millet (Echinochloa frumentacea (Roxb.) Link). Plant Breeding 140(2):246−53

doi: 10.1111/pbr.12892
[10]

Malathi VM, Jacob J, Venkateswarlu R, Kannababu N, Ratnavathi CV. 2024. in Nutritional Aspects, Phytochemical Composition and Potential Health Benefits of Small Millets. In Genetic improvement of Small Millets, eds Mishra S, Kumar S, Srivastava RC. pp. 129–52. Singapore: Springer. doi: 10.1007/978-981-99-7232-6_7

[11]

NCBI. 2024. Echinochloa esculenta. (Accessed August 08, 2024). www.ncbi.nlm.nih.gov/search/all/?term=Echinochloa+esculenta

[12]

Nehru G, Reddy AT, Reddy CCM, Sreenivasulu KN. 2021. Assessment of genetic variability in Indian barnyard millet genetic 134 resources [Echinochloa frumentacea (L.)]. The Journal of Research 49(4):134−37

[13]

Nozawa S, Takahashi M, Nakai H, Sato YI. 2006. Difference in SSR variations between Japanese barnyard millet (Echinochloa esculenta) and its wild relative E. crus-galli. Breeding Science 56:335−40

doi: 10.1270/jsbbs.56.335
[14]

Sood S, Joshi DC, Pattanayak A. 2020. Breeding advancements in barnyard millet. In Accelerated Plant Breeding, Volume 1, eds Gosal S, Wani S. Cham: Springer. pp. 391–409. doi: 10.1007/978-3-030-41866-3_15

[15]

Sood S, Khulbe RK, Saini N, Gupta A, Agrawal PK. 2014. Interspecific hybrid between Echinochloa esculenta (Japanese barnyard millet) and E. frumentacea (Indian barnyard millet) – A new avenue for genetic enhancement of barnyard millet. Electronic Journal of Plant Breeding 5:248−53

[16]

Wallace JG, Upadhyaya HD, Vetriventhan M, Buckler ES, Hash CT, et al. 2015. The genetic makeup of a global barnyard millet germplasm collection. The Plant Genome 8:plantgenome2014.10.0067

doi: 10.3835/plantgenome2014.10.0067
[17]

Hu X, Liu R, Mao H, Xu Y, Chen B, et al. 2023. Inter-Species Investigation of biological traits among eight Echinochloa species. Plants 12(17):3085

doi: 10.3390/plants12173085
[18]

Maithani D, Sharma A, Gangola S, Bhatt P, Bhandari G, et al. 2023. Barnyard millet (Echinochloa spp.): a climate resilient multipurpose crop. Vegetos 36(2):294−308

doi: 10.1007/s42535-022-00420-4
[19]

Rao AN. 2021. Echinochloa colona and Echinochloa crus-galli. In Biology and Management of Problematic Crop Weed Species, ed. Chauhan B. Amsterdam: Elsevier. pp. 197−239. doi: 10.1016/B978-0-12-822917-0.00013-6

[20]

Matloob A, Chauhan BS. 2021. Utilization of the neighborhood design to evaluate suitable cover crops and their density for Echinochloa colona management. PLoS One 16(7):e0254584

doi: 10.1371/journal.pone.0254584
[21]

Bhatt P, Kumar V, Rastogi H, Malik MK, Dixit R, et al. 2023. Functional and tableting properties of alkali-isolated and phosphorylated barnyard millet (Echinochloa esculenta) starch. ACS Omega 8(33):30294−305

doi: 10.1021/acsomega.3c03158
[22]

Bhinda MS, Hasan N, Joshi DC. 2023. Barnyard millet improvement: from pre-genomics to post-genomics era. In Smart Plant Breeding for Field Crops in Post-Genomics Era, eds Sharma D, Singh S, Sharma SK, Singh R. Singapore: Springer. pp. 255–70. doi: 10.1007/978-981-19-8218-7_8

[23]

Bhinda MS, Joshi DC, Parihar M, Meena RP, Joshi P, et al. 2023. Genetics, breeding, and genomics of Indian barnyard millet (Echinochloa frumentacea): status and perspectives. In Neglected and Underutilized Crops, eds Farooq M, Siddique KHM. Amsterdam: Elsevier. pp. 115–35. doi: 10.1016/B978-0-323-90537-4.00017-X

[24]

Khan R, Bhanu AN, Aneesha N, Sirisha H, Gupta ARSSH, et al. 2024. Floral biology, pollination, genetics, origin, and diversity in barnyard millet. In Genetic improvement of Small Millets, eds Mishra S, Kumar S, Srivastava RC. Singapore: Springer. pp. 479–91. doi: 10.1007/978-981-99-7232-6_23

[25]

Monteiro PV, Sudharshana L, Ramachandra G. 1988. Japanese barnyard millet (Echinochloa frumentacea): protein content, quality and SDS-PAGE of protein fractions. Journal of the Science of Food and Agriculture 43:17−25

doi: 10.1002/jsfa.2740430104
[26]

Moharil MP, Gawai D, Dikshit N, Dudhare MS, Jadhav PV. 2016. Assessment of genetic diversity in Indian Barnyard millet (Echinochloa spp. complex) using morphological and molecular markers. Journal of Applied and Natural Science 8:1643−48

doi: 10.31018/jans.v8i3.1016
[27]

Renganathan VG, Vanniarajan C, Nirmalakumari A, Raveendran M, Eshwari T, et al. 2017. Association analysis in germplasm and F2 segregating population of barnyard millet (Echinochloa frumentacea Roxb. Link) for biometrical and nutritional traits. International Journal of Current Microbiology and Applied Sciences 6:3394−400

doi: 10.20546/ijcmas.2017.608.406
[28]

Wu D, Shen E, Jiang B, Feng Y, Tang W, et al. 2022. Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nature Communications 13(1):689

doi: 10.1038/s41467-022-28359-9
[29]

Yamaguchi H, Utano A, Yasuda K, Yano A, Soejima A. 2005. A molecular phylogeny of wild and cultivated Echinochloa in East Asia inferred from non-coding region sequences of trnT-L-F. Weed Biology and Management 5:210−18

doi: 10.1111/j.1445-6664.2005.00185.x
[30]

Perumal S, Jayakodi M, Kim DS, Yang T, Natesan SA. 2016. The complete chloroplast genome sequence of Indian barnyard millet, Echinochloa frumentacea (Poaceae). Mitochondrial DNA Part B 1:79−80

doi: 10.1080/23802359.2015.1137832
[31]

Gowda J, Bharathi S, Somu G, Krishnappa M, Rekha D. 2009. Formation of core set in barnyard millet [Echinochloa frumentacea (Roxb.) Link] germplasm using data on twenty-four morpho-agronomic traits. International Journal of Plant Sciences 4:1−5

[32]

Prabha D, Negi Y, Khanna V. 2012. Assessment of Genetic Diversity of Barnyard Millet Accessions using Molecular Markers. Indian Journal of Plant Genetic Resources 25:174−179

[33]

Maharajan T, Krishna TPA, Krishnakumar NM, Vetriventhan M, Kudapa H, et al. 2024. Role of genome sequences of major and minor millets in strengthening food and nutritional security for future generations. Agriculture 14(5):670

doi: 10.3390/agriculture14050670
[34]

Mohanapriya B, Shanmugam A, Francis N, Indhu SM, Ravikesavan R. 2024. Breeding barnyard millet for abiotic stress tolerance. In Genetic improvement of Small Millets, eds Mishra S, Kumar S, Srivastava RC. Singapore: Springer. pp. 493–511. doi: 10.1007/978-981-99-7232-6_24

[35]

Babu BK, Chauhan R. 2017. In-Silico identification of EST based microsatellite markers and SNPs, and comparative genomic analysis of ESTs in barnyard millet for their omics applications. Current Agriculture Research Journal 5(3):279−87

doi: 10.12944/CARJ.5.3.03
[36]

Nandini C, Bhat S, Saritha HS, Pandey CD, Pandey S, et al. 2020. Characterization of barnyard millet (Echinocloa frumentaceae (Roxb.) Link) germplasm for quantitative traits to enhance its utilization. Electronic Journal of Plant Breeding 11(04):1066−72

[37]

Gupta A, Joshi D, Mahajan V, Gupta HS. 2010. Screening barnyard millet germplasm against grain smut (Ustilago panici-frumentacei Brefeld). Plant Genetic Resources 8:52−54

doi: 10.1017/S1479262109990141
[38]

Williams G, Vanniarajan C, Vetriventhan M, Thiageshwari S, Anandhi K, et al. 2019. Genetic variability for seedling stage salinity tolerance in barnyard millet [Echinochloa frumentaceae (Roxb.) Link]. Electronic Journal of Plant Breeding 10(2):552−58

[39]

Dhanalakshmi R, Subramanian A, Thirumurugan T, Elangovan M, Kalaimagal T. 2019. Genetic variability and association studies in barnyard millet (Echinochloa frumentacea (Roxb.) Link) germplasm under sodic soil condition. Electronic Journal of Plant Breeding 10(2):430−39

[40]

Elangovan M, Venkatesh K. 2024. Small millets genetic resources management. In Genetic improvement of Small Millets, eds Mishra S, Kumar S, Srivastava RC. Singapore: Springer. pp. 1–16. doi: 10.1007/978-981-99-7232-6_1

[41]

Arthi N, Rajagopal B, Geethanjali S, Nirmalakumari A, Senthil N. 2019. Screening of barnyard millet (Echinochloafrumentacea) germplasm for salinity tolerance. Electronic Journal of Plant Breeding 10(2):659−66

[42]

Jethava KM. 2021. Molecular marker based genetic diversity analysis in barnyard millet (Echinochloa frumentacea L.) 3325. Thesis. Junagadh Agricultural University, Junagadh. https://krishikosh.egranth.ac.in/handle/1/5810191808

[43]

Roy B, Tiwari S, Tripathi N, Thakur VV. 2024. Molecular diversity analysis among Indian barnyard millet [Echinochloa frumentacea (L)] genotypes using RAPD markers. Journal of Global Agriculture and Ecology 16(1):1−7

doi: 10.56557/jogae/2024/v16i18506
[44]

Desai A, Dakappa SS. 2020. Genetic diversity analysis of millet crop species of Panicum genus using rapd markers. World Journal of Pharmaceutical Research 9(5):1132−41

[45]

Cusaro CM, Grazioli C, Zambuto F, Capelli E, Brusoni M. 2022. An improved method for assessing simple sequence repeat (SSR) variation in Echinochloa crus-galli (L.) P. Beauv (barnyardgrass). Diversity 14(1):3

doi: 10.3390/d14010003
[46]

Gao Y, Shen G, Yuan G, Tian Z. 2022. Comparative analysis of whole chloroplast genomes of three common species of Echinochloa (Gramineae) in paddy fields. International Journal of Molecular Sciences 23(22):13864

doi: 10.3390/ijms232213864
[47]

Dineshbhai CN. 2023. Assesment of molecular diversity and proximate composition in millets. Thesis. Junagadh Agricultural University, Junagadh. https://krishikosh.egranth.ac.in/server/api/core/bitstreams/75bf0b10-b2ce-43f9-aaf1-74f2a077aa2b/content

[48]

Meniya VH, Padhiyar SM, Desai H, Kheni JK, Tomar RS. 2023. Development and validation of microsatellite markers for Barnyard Millet obtained by partial genome assembly. Annals of Arid Zone 62(1):83−89

doi: 10.59512/aaz.2023.62.1.9
[49]

Sahoo JP, Mahapatra M. 2023. International year of millets - 2023: revitalisation of millets towards a sustainable nutritional security. Technology in Agronomy 3(1):10

doi: 10.48130/TIA-2023-0010
[50]

Jayakodi M, Madheswaran M, Adhimoolam K, Perumal S, Manickam D, et al. 2019. Transcriptomes of Indian barnyard millet and barnyard grass reveal putative genes involved in drought adaptation and micronutrient accumulation. Acta Physiologiae Plantarum 41:66

doi: 10.1007/s11738-019-2855-4
[51]

Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J. 2020. Barnyard millet for food and nutritional security: current status and future research direction. Frontiers in Genetics 11:500

doi: 10.3389/fgene.2020.00500
[52]

Chen G, Zhang W, Fang J, Dong L. 2017. Identification of massive molecular markers in Echinochloa phyllopogon using a restriction-site associated DNA approach. Plant Diversity 39(5):287−93

doi: 10.1016/j.pld.2017.08.004
[53]

Mundada PS, Kadam SB, Pable AA, Barvkar VT. 2022. Recent advances and applicability of GBS, GWAS, and GS in millet crops. In Genotyping by Sequencing for Crop Improvement, eds Sonah H, Goyal V, Shivaraj SM, Deshmukh EK. pp. 270−94. doi: 10.1002/9781119745686.ch12

[54]

Babu BK, Rashmi C, Sood S. 2018. Cross transferability of finger millet and maize genomic SSR markers for genetic diversity and population structure analysis of barnyard millet. Indian Journal of Genetics and Plant Breeding 78(3):364−372

[55]

Parveen R, Kumar M, Swapnil, Singh D, Shahani M, et al. 2023. Understanding the genomic selection for crop improvement: current progress and future prospects. Molecular Genetics and Genomics 298(4):813−21

doi: 10.1007/s00438-023-02026-0
[56]

Sao A, Pali V, Patil HE. 2024. Genetic improvement for yield, quality, biotic, and abiotic stresses in little millet (Panicum sumatrense Roth. ex Roem. and Schult.). In Genetic improvement of Small Millets, eds Mishra S, Kumar S, Srivastava RC. Singapore: Springe. pp. 571–99. doi: 10.1007/978-981-99-7232-6_28

[57]

Ishikawa G, Seimiya Y, Saito M, Nakamura T, Hoshino T. 2013. Molecular characterization of spontaneous and induced mutations in the three homoeologous waxy genes of Japanese barnyard millet [Echinochloa esculenta (A. Braun) H. Scholz]. Molecular Breeding 31:69−78

doi: 10.1007/s11032-012-9769-9
[58]

Pradhan J, Sahoo JP, Samal KC, Dash M. 2024. Millets and other potential crops: ensuring climate resilience and nutritional security, 1st Edition. London: CRC Press. doi: 10.1201/9781003531937

[59]

Kayastha S, Sahoo JP, Mahapatra M, Panda N. 2024. Understanding the molecular breeding and omics approaches for finger millet (Eleusine coracana L.) improvement towards a global sustainable nutritional security. Crop Design 3(1):100049

doi: 10.1016/j.cropd.2023.100049
[60]

Kayastha S, Sahoo JP, Mahapatra M, Sharma SS. 2024. Finger millet (Eleusine coracana) enhancement through genomic resources and breeding methods: current implications and potential future interventions. Planta 259(6):139

doi: 10.1007/s00425-024-04415-0
[61]

Sapara V, Khisti M, Yogendra K, Reddy PS. 2024. Gene editing tool kit in millets: present status and future directions. The Nucleus 67:157−79

doi: 10.1007/s13237-024-00485-3
[62]

Ceasar A. 2022. Genome-editing in millets: current knowledge and future perspectives. Molecular Biology Reports 49(1):773−81

doi: 10.1007/s11033-021-06975-w
[63]

Tang N, Xia Y, Zhan Y, Dan J, Yu M, et al. 2020. Improvement of chloroplast transformation using CRISPR/Cas9. Journal of Biobased Materials and Bioenergy 14(3):401−07

doi: 10.1166/jbmb.2020.1970
[64]

Arora L, Narula A. 2017. Gene editing and crop improvement using CRISPR-Cas9 system. Frontiers in Plant Science 8:1932

doi: 10.3389/fpls.2017.01932
[65]

Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B. 2017. CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in Plant Science 8:1635

doi: 10.3389/fpls.2017.01635
[66]

El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H. 2020. Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Frontiers in Plant Science 11:56

doi: 10.3389/fpls.2020.00056
[67]

Buza T, McCarthy FM. 2013. Functional genomics: applications to production agriculture. CABI Reviews 8:54

doi: 10.1079/PAVSNNR20138054
[68]

Ajeesh Krishna TP, Maharajan T, Ceasar SA. 2022. Improvement of millets in the post-genomic era. Physiology and Molecular Biology of Plants 28(3):669−85

doi: 10.1007/s12298-022-01158-8
[69]

Matthew L. 2004. RNAi for plant functional genomics. Comparative and Functional Genomics 5:240−44

doi: 10.1002/cfg.396
[70]

Dhaka A, Singh RK, Muthamilarasan M, Prasad M. 2021. Genetics and genomics interventions for promoting millets as functional foods. Current Genomics 22(3):154−63

doi: 10.2174/1389202922666210225084212
[71]

Lo SF, Fan MJ, Hsing YL, Chen LJ, Che S, et al. 2016. Genetic resources offer efficient tools for rice functional genomics research. Plant, Cell & Environment 39(5):998−1013

doi: 10.1111/pce.12632
[72]

Fei Z, Joung JG, Tang X, Zheng Y, Huang M, et al. 2011. Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Research 39:D1156−D1163

doi: 10.1093/nar/gkq991
[73]

Sato F. 2005. RNAi and functional genomics. Plant Biotechnology 22:431−42

doi: 10.5511/plantbiotechnology.22.431
[74]

Powell FL. 2003. Functional genomics and the comparative physiology of hypoxia. Annual Review of Physiology 65:203−30

doi: 10.1146/annurev.physiol.65.092101.142711
[75]

Gao W, Long L, Tian X, Xu F, Liu J, et al. 2017. Genome editing in cotton with the CRISPR/Cas9 system. Frontiers in Plant Science 8:1364

doi: 10.3389/fpls.2017.01364
[76]

Rana SS, Tiwari S, Gupta N, Tripathi MK, Tripathi N, et al. 2023. Validating the nutraceutical significance of minor millets by employing nutritional–antinutritional profiling. Life 13(9):1918

doi: 10.3390/life13091918
[77]

Sun M, Yan H, Zhang A, Jin Y, Lin C, et al. 2023. Milletdb: a multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. Plant Biotechnology Journal 21:2348−57

doi: 10.1111/pbi.14136
[78]

Supritha Raj DS, Ragi S, Pattanashetti BM, Mendapera I. 2024. Breeding proso millet (Panicummiliaceum L.) for abiotic stress resistance. In Genetic improvement of Small Millets, Mishra S, Kumar S, Srivastava RC. Singapore: Springer. pp. 443–53. doi: 10.1007/978-981-99-7232-6_20