[1]

Grimont F, Grimont PAD. 2006. The genus Serratia. In The Prokaryotes, eds. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. New York: Springer. pp. 219–44. doi: 10.1007/0-387-30746-X_11

[2]

Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, et al. 2001. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of Bacteriology 183:2634−45

doi: 10.1128/JB.183.8.2634-2645.2001
[3]

Zhao J, Wang S, Zhu X, Wang Y, Liu X, et al. 2021. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb1997 and Serratia plymuthica Sneb2001 for the biological control of root-knot nematode. Applied Soil Ecology 164:103924

doi: 10.1016/j.apsoil.2021.103924
[4]

Strobel G, Li JY, Sugawara F, Koshino H, Harper J, et al. 1999. Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology 145:3557−64

doi: 10.1099/00221287-145-12-3557
[5]

Khan AR, Park GS, Asaf S, Hong SJ, Jung BK, et al. 2017. Complete genome analysis of Serratia marcescens RSC-14: a plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS ONE 12:e0171534

doi: 10.1371/journal.pone.0171534
[6]

Singh RP, Jha PN. 2016. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11:e0155026

doi: 10.1371/journal.pone.0155026
[7]

Okamoto H, Sato Z, Sato M, Koiso Y, Iwasaki S, et al. 1998. Identification of antibiotic red pigments of Serratia marcescens F-1-1, a biocontrol agent of damping-off of cucumber, and antimicrobial activity against other plant pathogens. Japanese Journal of Phytopathology 64:294−98

doi: 10.3186/jjphytopath.64.294
[8]

Kalbe C, Marten P, Berg G. 1996. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiological Research 151:433−39

doi: 10.1016/S0944-5013(96)80014-0
[9]

John Jimtha C, Jishma P, Sreelekha S, Chithra S, Radhakrishnan E. 2017. Antifungal properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere 3:105−08

doi: 10.1016/j.rhisph.2017.02.003
[10]

Levenfors JJ, Hedman R, Thaning C, Gerhardson B, Welch CJ. 2004. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biology and Biochemistry 36:677−85

doi: 10.1016/j.soilbio.2003.12.008
[11]

Someya N, Nakajima M, Hirayae K, Hibi T, Akutsu K. 2001. Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain B2 against gray mold pathogen, Botrytis cinerea. Journal of General Plant Pathology 67:312−17

doi: 10.1007/PL00013038
[12]

Soenens A, Imperial J. 2020. Biocontrol capabilities of the genus Serratia. Phytochemistry Reviews 19:577−87

doi: 10.1007/s11101-019-09657-5
[13]

Shikov AE, Merkushova AV, Savina IA, Nizhnikov AA, Antonets KS. 2023. The man, the plant, and the insect: shooting host specificity determinants in Serratia marcescens pangenome. Frontiers in Microbiology 14:1211999

doi: 10.3389/fmicb.2023.1211999
[14]

Grimont PAD, Grimont F, Starr MP. 1981. Serratia species isolated from plants. Current Microbiology 5:317−22

doi: 10.1007/BF01567926
[15]

Hennessy RC, Dichmann SI, Martens HJ, Zervas A, Stougaard P. 2020. Serratia inhibens sp. nov., a new antifungal species isolated from potato (solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology 70:4204−11

doi: 10.1099/ijsem.0.004270
[16]

Zhang CW, Zhang J, Zhao JJ, Zhao X, Zhao DF, et al. 2017. Serratia oryzae sp. nov., isolated from rice stems. International Journal of Systematic and Evolutionary Microbiology 67:2928−33

doi: 10.1099/ijsem.0.002049
[17]

Son JS, Hwang YJ, Lee SY, Ghim SY. 2021. Serratia rhizosphaerae sp. nov., a novel plant resistance inducer against soft rot disease in tobacco. International Journal of Systematic and Evolutionary Microbiology 71:004788

doi: 10.1099/ijsem.0.004788
[18]

Kshetri L, Naseem F, Pandey P. 2019. Role of Serratia sp. as biocontrol agent and plant growth stimulator, with prospects of biotic stress management in plant. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Microorganisms for Sustainability, vol. 13, ed. Sayyed R. Singapore: Springer. pp. 169–200. doi: 10.1007/978-981-13-6986-5_6

[19]

Chakraborty U, Chakraborty BN, Chakraborty AP. 2010. Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. Journal of Plant Interactions 5:261−72

doi: 10.1080/17429140903551738
[20]

Kulkova I, Wróbel B, Dobrzyński J. 2024. Serratia spp. as plant growth-promoting bacteria alleviating salinity, drought, and nutrient imbalance stresses. Frontiers in Microbiology 15:1342331

doi: 10.3389/fmicb.2024.1342331
[21]

Clements T, Ndlovu T, Khan W. 2019. Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiological Research 229:126329

doi: 10.1016/j.micres.2019.126329
[22]

Petersen LM, Tisa LS. 2013. Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Canadian Journal of Microbiology 59:627−40

doi: 10.1139/cjm-2013-0343
[23]

Nascimento F, Vicente C, Cock P, Tavares M, Rossi M, et al. 2018. From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microbial Genomics 4:e000178

doi: 10.1099/mgen.0.000178
[24]

Zhang CX, Yang SY, Xu MX, Sun J, Liu H, et al. 2009. Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). International Journal of Systematic and Evolutionary Microbiology 59:1603−08

doi: 10.1099/ijs.0.003871-0
[25]

Khoa NĐ, Giàu NĐN, Tuấn TQ. 2016. Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control 103:1−10

doi: 10.1016/j.biocontrol.2016.07.010
[26]

Jagtap RR, Mali GV, Waghmare SR, Nadaf NH, Nimbalkar MS, et al. 2023. Impact of plant growth promoting rhizobacteria Serratia nematodiphila RGK and Pseudomonas plecoglossicida RGK on secondary metabolites of turmeric rhizome. Biocatalysis and Agricultural Biotechnology 47:102622

doi: 10.1016/j.bcab.2023.102622
[27]

Mahlen SD. 2011. Serratia infections: from military experiments to current practice. Clinical Microbiology Reviews 24:755−91

doi: 10.1128/CMR.00017-11
[28]

Schappe T, Ritchie DF, Thiessen LD. 2020. First report of Serratia marcescens causing a leaf spot disease on industrial hemp (Cannabis sativa). Plant Disease 104:1248

doi: 10.1094/PDIS-04-19-0782-PDN
[29]

Mphande K, Beattie GA, Gleason ML. 2024. First report of cucurbit yellow vine disease caused by Serratia marcescens on cucurbit crops in Iowa. Plant Disease 108:1093

doi: 10.1094/PDIS-12-23-2716-PDN
[30]

Williams DJ, Grimont PAD, Cazares A, Grimont F, Ageron E, et al. 2022. The genus Serratia revisited by genomics. Nature Communications 13:5195

doi: 10.1038/s41467-022-32929-2
[31]

Abreo E, Altier N. 2019. Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Scientific Reports 9:46

doi: 10.1038/s41598-018-37118-0
[32]

Zhang Q, Melcher U, Zhou L, Najar FZ, Roe BA, et al. 2005. Genomic comparison of plant pathogenic and nonpathogenic Serratia marcescens strains by suppressive subtractive hybridization. Applied and Environmental Microbiology 71:7716−23

doi: 10.1128/AEM.71.12.7716-7723.2005
[33]

Matteoli FP, Passarelli-Araujo H, Reis RJA, Da Rocha LO, De Souza EM, et al. 2018. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 19:750

doi: 10.1186/s12864-018-5130-y
[34]

Jeong H, Kloepper JW, Ryu CM. 2015. Genome sequence of rhizobacterium Serratia marcescens strain 90-166, which triggers induced systemic resistance and plant growth promotion. Genome Announcements 3:e00667-15

doi: 10.1128/genomeA.00667-15
[35]

Afzal I, Shinwari ZK, Sikandar S, Shahzad S. 2019. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiological Research 221:36−49

doi: 10.1016/j.micres.2019.02.001
[36]

Liu X, Jia J, Popat R, Ortori CA, Li J, et al. 2011. Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style. BMC Microbiology 11:26

doi: 10.1186/1471-2180-11-26
[37]

Pang Y, Liu X, Ma Y, Chernin L, Berg G, et al. 2009. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. European Journal of Plant Pathology 124:261−68

doi: 10.1007/s10658-008-9411-1
[38]

Jung BK, Khan AR, Hong SJ, Park GS, Park YJ, et al. 2017. Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. Annals of Microbiology 67:623−32

doi: 10.1007/s13213-017-1291-1
[39]

Ryu CM, Choi HK, Lee CH, Murphy JF, Lee JK, et al. 2013. Modulation of quorum sensing in acylhomoserine lactone-producing or -degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90-166. The Plant Pathology Journal 29:182−92

doi: 10.5423/PPJ.SI.11.2012.0173
[40]

Labbate M, Zhu H, Thung L, Bandara R, Larsen MR, et al. 2007. Quorum-sensing regulation of adhesion in Serratia marcescens MG1 is surface dependent. Journal of Bacteriology 189:2702−11

doi: 10.1128/JB.01582-06
[41]

Luo HZ, Zhou JW, Sun B, Jiang H, Tang S, et al. 2021. Inhibitory effect of norharmane on Serratia marcescens NJ01 quorum sensing-mediated virulence factors and biofilm formation. Biofouling 37:145−60

doi: 10.1080/08927014.2021.1874942
[42]

Fekrirad Z, Kashef N, Arefian E. 2019. Photodynamic inactivation diminishes quorum sensing-mediated virulence factor production and biofilm formation of Serratia marcescens. World Journal of Microbiology and Biotechnology 35:191

doi: 10.1007/s11274-019-2768-9
[43]

Solanki MK, Solanki AC, Kumari B, Kashyap BK, Singh RK. 2020. Plant and soil-associated biofilm-forming bacteria: their role in green agriculture. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms, eds. Yadav MK, Singh BP. Amsterdam: Elsevier. pp 151–64. doi: 10.1016/B978-0-444-64279-0.00012-8

[44]

Ludueña LM, Valdés PF, Anzuay MS, Dalmasso R, Angelini JG, et al. 2023. Impact of phosphorus deficiency on the interaction between the biofertilizer strain Serratia sp. S119 with peanut (Arachis hypogaeae L.) and maize (Zea mays L.) plants. Plant and Soil 487:639−53

doi: 10.1007/s11104-023-05963-2
[45]

Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, et al. 2019. Systems biology of plant-microbiome interactions. Molecular Plant 12:804−21

doi: 10.1016/j.molp.2019.05.006
[46]

Guo Z, Qin Y, Lv J, Wang X, Ye T, et al. 2024. High red/far-red ratio promotes root colonization of Serratia plymuthica A21-4 in tomato by root exudates-stimulated chemotaxis and biofilm formation. Plant Physiology and Biochemistry 206:108245

doi: 10.1016/j.plaphy.2023.108245
[47]

Kurze S, Bahl H, Dahl R, Berg G. 2001. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Disease 85:529−34

doi: 10.1094/PDIS.2001.85.5.529
[48]

Müller H, Westendorf C, Leitner E, Chernin L, Riedel K, et al. 2009. Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiology Ecology 67:468−78

doi: 10.1111/j.1574-6941.2008.00635.x
[49]

Jung BK, Ibal JC, Pham HQ, Kim MC, Park GS, et al. 2020. Quorum sensing system affects the plant growth promotion traits of Serratia fonticola GS2. Frontiers in Microbiology 11:536865

doi: 10.3389/fmicb.2020.536865
[50]

Hanif MK, Malik KA, Hameed S, Saddique MJ, Ayesha, et al. 2020. Growth stimulatory effect of AHL producing Serratia spp. from potato on homologous and non-homologous host plants. Microbiological Research 238:126506

doi: 10.1016/j.micres.2020.126506
[51]

Lasa AV, Mašínová T, Baldrian P, Fernández-López M. 2019. Bacteria from the endosphere and rhizosphere of Quercus spp. use mainly cell wall-associated enzymes to decompose organic matter. PLoS ONE 14:e0214422

doi: 10.1371/journal.pone.0214422
[52]

Dogan G, Taskin B. 2021. Hydrolytic enzymes producing bacterial endophytes of some poaceae plants. Polish Journal of Microbio logy 70:297−304

doi: 10.33073/pjm-2021-026
[53]

Lucero CT, Lorda GS, Anzuay MS, Ludueña LM, Taurian T. 2021. Peanut endophytic phosphate solubilizing bacteria increase growth and p content of soybean and maize plants. Current Microbiology 78:1961−72

doi: 10.1007/s00284-021-02469-x
[54]

Qian JM, Bai Y. 2021. Stuck on you: bacterial-auxin-mediated bacterial colonization of plant roots. Cell Host and Microbe 29:1471−73

doi: 10.1016/j.chom.2021.09.014
[55]

Duca DR, Glick BR. 2020. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied Microbiology and Biotechnology 104:8607−19

doi: 10.1007/s00253-020-10869-5
[56]

Jung BK, Khan AR, Hong SJ, Park GS, Park YJ, et al. 2017. Genomic and phenotypic analyses of Serratia fonticola strain GS2: a rhizobacterium isolated from sesame rhizosphere that promotes plant growth and produces N-acyl homoserine lactone. Journal of Biotechnology 241:158−62

doi: 10.1016/j.jbiotec.2016.12.002
[57]

Ravi A, Das S, Sebastian SK, Aravindakumar CT, Mathew J, et al. 2023. Bioactive metabolites of Serratia sp. NhPB1 isolated from pitcher of Nepenthes and its application to control Pythium aphanidermatum. Probiotics and Antimicrobial Proteins 2023:1−16

doi: 10.1007/s12602-023-10154-7
[58]

Lin C, Zhang F, Chen R, Lin S, Jiao P, et al. 2024. Potential of a novel endophytic diazotrophic Serratia sp. Wed4 for pyrene biodegradation. International Biodeterioration & Biodegradation 186:105705

doi: 10.1016/j.ibiod.2023.105705
[59]

Zhang C, Yu Z, Zhang M, Li X, Wang M, et al. 2022. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. Journal of Experimental Botany 73:3711−25

doi: 10.1093/jxb/erac074
[60]

Lindström K, Mousavi SA. 2020. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology 13:1314−35

doi: 10.1111/1751-7915.13517
[61]

Etesami H, Maheshwari DK. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicology and Environmental Safety 156:225−46

doi: 10.1016/j.ecoenv.2018.03.013
[62]

Owens CP, Tezcan FA. 2018. Conformationally gated electron transfer in nitrogenase. Isolation, purification, and characterization of nitrogenase from Gluconacetobacter diazotrophicus. Methods in Enzymology 599:355−86

doi: 10.1016/bs.mie.2017.09.007
[63]

Li Y, Guo L, Häggblom MM, Yang R, Li M, et al. 2022. Serratia spp. are responsible for nitrogen fixation fueled by As(III) oxidation, a novel biogeochemical process identified in mine tailings. Environmental Science & Technology 56:2033−43

doi: 10.1021/acs.est.1c06857
[64]

Hamada MA, Soliman ERS. 2023. Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790). BMC Microbiology 23:210

doi: 10.1186/s12866-023-02941-7
[65]

Ludueña LM, Anzuay MS, Angelini JG, McIntosh M, Becker A, et al. 2018. Strain Serratia sp. S119: a potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms. Applied Soil Ecology 126:107−12

doi: 10.1016/j.apsoil.2017.12.024
[66]

Sashidhar B, Podile AR. 2010. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of Applied Microbiology 109:1−12

doi: 10.1111/j.1365-2672.2009.04654.x
[67]

Ludueña LM, Anzuay MS, Magallanes-Noguera C, Tonelli ML, Ibañez FJ, et al. 2017. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119. Research in Microbiology 168:710−21

doi: 10.1016/j.resmic.2017.07.001
[68]

Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, et al. 2017. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. Journal of Genetic Engineering and Biotechnology 15:169−78

doi: 10.1016/j.jgeb.2017.01.003
[69]

Ben Farhat M, Farhat A, Bejar W, Kammoun R, Bouchaala K, et al. 2009. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Archives of Microbiology 191:815−24

doi: 10.1007/s00203-009-0513-8
[70]

Rawat P, Das S, Shankhdhar D, Shankhdhar SC. 2021. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition 21:49−68

doi: 10.1007/s42729-020-00342-7
[71]

Sood Y, Singhmar R, Singh V, Malik DK. 2023. Isolation and characterization of potential potassium solubilizing bacteria with various plant growth promoting traits. Biosciences Biotechnology Research Asia 20:79−84

doi: 10.13005/bbra/3070
[72]

Sharma A, Shankhdhar D, Shankhdhar SC. 2016. Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In Potassium Solubilizing Microorganisms for Sustainable Agriculture, eds. Meena V, Maury, B, Verma J, Meena R. New Delhi: Springer. pp. 203–19. doi: 10.1007/978-81-322-2776-2_15

[73]

Upadhayay VK, Singh AV, Khan A. 2021. Cross talk between zinc-solubilizing bacteria and plants: a short tale of bacterial-assisted zinc biofortification. Frontiers in Soil Science 1:788170

doi: 10.3389/fsoil.2021.788170
[74]

Bhatti AR, Alvi A, Walia S, Chaudhry GR. 2002. pH-dependent modulation of alkaline phosphatase activity in Serratia marcescens. Current Microbiology 45:245−49

doi: 10.1007/s00284-002-3740-7
[75]

Wallenstein MD, Burns RG. 2015. Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In Methods of Soil Enzymology, volume 9, ed. Dick RP. USA: John Wiley & Sons, Ltd. pp. 35–55. doi: 10.2136/sssabookser9.c2

[76]

Hamane S, El Yemlahi A, Hassani Zerrouk M, El Galiou O, Laglaoui A, et al. 2023. Plant growth promotion and biocontrol potentiality of endophytes isolated from root nodules of sulla flexuosa L. plants. International Journal of Agronomy 2023:2451806

doi: 10.1155/2023/2451806
[77]

Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of Microbiology 191:415−24

doi: 10.1007/s00203-009-0466-y
[78]

El-Esawi MA, Alaraidh IA, Alsahli AA, Alzahrani SM, Ali HM, et al. 2018. Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. International Journal of Molecular Sciences 19:3310

doi: 10.3390/ijms19113310
[79]

Tanwir K, Abbas S, Hussaan M, Basit F, Alomrani SO. 2023. Bio-inoculation with Serratia CP-13 enhances Cd detoxification via modulation of phytohormone, gas exchange attributes and nutrient acquisition in maize cultivars cultivated in Cd-stressed soil. Plant Stress 10:100290

doi: 10.1016/j.stress.2023.100290
[80]

Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, et al. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52:347−75

doi: 10.1146/annurev-phyto-082712-102340
[81]

Saijo Y, Loo EP. 2020. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytologist 225:87−104

doi: 10.1111/nph.15989
[82]

Babenko LM, Kosakivska IV, Romanenko KO. 2022. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biology International 46:523−34

doi: 10.1002/cbin.11749
[83]

Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, et al. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant, Cell & Environment 29:909−18

doi: 10.1111/j.1365-3040.2005.01471.x
[84]

Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, et al. 2014. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. The Plant Cell 26:2708−23

doi: 10.1105/tpc.114.126763
[85]

Someya N, Nakajima M, Hibi T, Yamaguchi I, Akutsu K. 2002. Induced resistance to rice blast by antagonistic bacterium, Serratia marcescens strain B2. Journal of General Plant Pathology 68:177−82

doi: 10.1007/PL00013073
[86]

Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, et al. 2011. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiology 157:1407−18

doi: 10.1104/pp.111.180604
[87]

Martin-Rivilla H, Garcia-Villaraco A, Ramos-Solano B, Gutierrez-Mañero FJ, Lucas JA. 2020. Bioeffectors as biotechnological tools to boost plant innate immunity: signal transduction pathways involved. Plants 9:1731

doi: 10.3390/plants9121731
[88]

De Vleesschauwer D, Chernin L, Höfte MM. 2009. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biology 9:9

doi: 10.1186/1471-2229-9-9
[89]

Petersen LM, Tisa LS. 2014. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence. Journal of Bacteriology 196:3923−36

doi: 10.1128/JB.01908-14
[90]

Liu X, Jia J, Atkinson S, Cámara M, Gao K, et al. 2010. Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World Journal of Microbiology and Biotechnology 26:1465−71

doi: 10.1007/s11274-010-0321-y
[91]

Williamson NR, Fineran PC, Leeper FJ, Salmond GPC. 2006. The biosynthesis and regulation of bacterial prodiginines. Nature Reviews Microbiology 4:887−99

doi: 10.1038/nrmicro1531
[92]

Darshan N, Manonmani HK. 2016. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Express 6:50

doi: 10.1186/s13568-016-0222-z
[93]

Costa R, Van Aarle IM, Mendes R, Van Elsas JD. 2009. Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environmental Microbiology 11:159−75

doi: 10.1111/j.1462-2920.2008.01750.x
[94]

Nose M, Arima K. 1969. On the mode of action of a new antifungal antibiotic, pyrrolnitrin. The Journal of Antibiotics 22:135−43

doi: 10.7164/antibiotics.22.135
[95]

Tripathi RK, Gottlieb D. 1969. Mechanism of action of the antifungal antibiotic pyrrolnitrin. Journal of Bacteriology 100:310−18

doi: 10.1128/jb.100.1.310-318.1969
[96]

Eckelmann D, Spiteller M, Kusari S. 2018. Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic Serratia marcescens harbored in Maytenus serrata. Scientific Reports 8:5283

doi: 10.1038/s41598-018-23538-5
[97]

Su C, Xiang Z, Liu Y, Zhao X, Sun Y, et al. 2016. Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genomics 17:865

doi: 10.1186/s12864-016-3171-7
[98]

Nguyen HT, Kim HG, Yu NH, Hwang IM, Kim H, et al. 2021. In Vitro and in vivo antibacterial activity of serratamid, a novel peptide-polyketide antibiotic isolated from Serratia plymuthica C1, against phytopathogenic bacteria. Journal of Agricultural and Food Chemistry 69:5471−80

doi: 10.1021/acs.jafc.1c01162
[99]

Schmidt R, De Jager V, Zühlke D, Wolff C, Bernhardt J, et al. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Scientific Reports 7:862

doi: 10.1038/s41598-017-00893-3
[100]

Abreo E, Valle D, González A, Altier N. 2021. Control of damping-off in tomato seedlings exerted by Serratia spp. strains and identification of inhibitory bacterial volatiles in vitro. Systematic and Applied Microbiology 44:126177

doi: 10.1016/j.syapm.2020.126177
[101]

Rybakova D, Müller H, Olimi E, Schaefer A, Cernava T, et al. 2022. To defend or to attack? Antagonistic interactions between Serratia plymuthica and fungal plant pathogens, a species-specific volatile dialogue. Frontiers in Sustainable Food Systems 6:1020634

doi: 10.3389/fsufs.2022.1020634
[102]

Ganley JG, Carr G, Ioerger TR, Sacchettini JC, Clardy J, et al. 2018. Discovery of antimicrobial lipodepsipeptides produced by a Serratia sp. within mosquito microbiomes. ChemBioChem 19:1590−94

doi: 10.1002/cbic.201800124
[103]

Clements-Decker T, Rautenbach M, van Rensburg W, Khan S, Stander M, et al. 2023. Secondary metabolic profiling of Serratia marcescens NP10 reveals new stephensiolides and glucosamine derivatives with bacterial membrane activity. Scientific Reports 13:2360

doi: 10.1038/s41598-023-28502-6
[104]

Masschelein J, Mattheus W, Gao LJ, Moons P, van Houdt R, et al. 2013. A PKS/NRPS/FAS hybrid gene cluster from Serratia plymuthica RVH1 encoding the biosynthesis of three broad spectrum, zeamine-related antibiotics. PLoS ONE 8:e54143

doi: 10.1371/journal.pone.0054143
[105]

Masschelein J, Clauwers C, Awodi UR, Stalmans K, Vermaelen W, et al. 2015. A combination of polyunsaturated fatty acid, nonribosomal peptide and polyketide biosynthetic machinery is used to assemble the zeamine antibiotics. Chemical Science 6:923−29

doi: 10.1039/C4SC01927J
[106]

Ortiz A, Sansinenea E. 2023. The possibility of using Serratia isolates for the production of biopreparations in the protection of plants against diseases and pests. Archives of Microbiology 205:288

doi: 10.1007/s00203-023-03633-6
[107]

Mohan M, Selvakumar G, Sushil SN, Bhatt JC, Gupta HS. 2011. Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World Journal of Microbiology and Biotechnology 27:2545−51

doi: 10.1007/s11274-011-0724-4
[108]

Sutio G, Afifah AN, Maharani R, Basri M. 2023. Serratia marcescens strain NPKC3_2_21 as endophytic phosphate solubilizing bacteria and entomopathogen: promising combination approach as rice biofertilizer. Biodiversitas Journal of Biological Diversity 24:901−09

[109]

Aggarwal C, Paul S, Tripathi V, Paul B, Khan MA. 2017. Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura. Journal of Invertebrate Pathology 143:115−23

doi: 10.1016/j.jip.2016.12.004
[110]

Raymann K, Coon KL, Shaffer Z, Salisbury S, Moran NA. 2018. Pathogenicity of serratia marcescens strains in honey bees. mBio 9:e01649-18

doi: 10.1128/mbio.01649-18
[111]

Zhong B, Lv C, Li W, Li C, Chen T. 2023. Virulence of entomopathogenic bacteria Serratia marcescens against the red palm weevil, Rhynchophorus ferrugineus (Olivier). PeerJ 11:e16528

doi: 10.7717/peerj.16528
[112]

Perreau J, Patel DJ, Anderson H, Maeda GP, Elston KM, et al. 2021. Vertical transmission at the pathogen-symbiont interface: Serratia symbiotica and aphids. mBio 12:e00359-21

doi: 10.1128/mbio.00359-21
[113]

Pons I, Renoz F, Noël C, Hance T. 2019. Circulation of the cultivable symbiont serratia symbiotica in aphids is mediated by plants. Frontiers in Microbiology 10:764

doi: 10.3389/fmicb.2019.00764
[114]

Wu D, Li P, Zhou J, Gao M, Lou X, et al. 2016. Identification of a toxic serralysin family protease with unique thermostable property from S. marcescens FS14. International Journal of Biological Macromolecules 93:98−106

doi: 10.1016/j.ijbiomac.2016.08.041
[115]

Lee J, Lee DW. 2022. Insecticidal serralysin of Serratia marcescens is detoxified in M3 midgut region of Riptortus pedestris. Frontiers in Microbiology 13:913113

doi: 10.3389/fmicb.2022.913113
[116]

Ishii K, Adachi T, Hara T, Hamamoto H, Sekimizu K. 2014. Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori. Journal of Invertebrate Pathology 117:61−67

doi: 10.1016/j.jip.2014.02.001
[117]

Liang TW, Chen SY, Chen YC, Chen CH, Yen YH, et al. 2013. Enhancement of prodigiosin production by Serratia marcescens TKU011 and its insecticidal activity relative to food colorants. Journal of Food Science 78:M1743−M1751

doi: 10.1111/1750-3841.12272
[118]

Wang SL, Wang CY, Yen YH, Liang TW, Chen SY, et al. 2012. Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen. Process Biochemistry 47:1684−90

doi: 10.1016/j.procbio.2011.07.010
[119]

Nguyen HH, Nguyen KHA. 2015. Bioefficacy of Serratia marcescens isolated from entomopathogenic nematodes (EPN) and their secondary metabolite prodigiosin against Spodoptera litura. Science and Technology Development Journal 18:5−15

doi: 10.32508/stdj.v18i2.1140
[120]

Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Salunke BK, et al. 2015. Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pesticide Biochemistry and Physiology 123:49−55

doi: 10.1016/j.pestbp.2015.01.018
[121]

Eski A, Özdemir T. 2022. Insecticidal activity of prodigiosin pigment on Tenebrio molitor (Coleoptera: Tenebrionidae). Bilecik Seyh Edebali University Journal of Science 9:1035−40

[122]

Zhou W, Li J, Chen J, Liu X, Xiang T, et al. 2016. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens. Journal of Invertebrate Pathology 136:92−94

doi: 10.1016/j.jip.2016.03.011
[123]

Kour D, Yadav AN. 2023. Mitigation of low temperature stress and plant growth promotion in barley (Hordeum vulgare L.) by inoculation of psychrotrophic P-solubilizing Serratia nematodiphila EU-PW75. Cereal Research Communications 51:527−35

doi: 10.1007/s42976-022-00324-8
[124]

Nordstedt NP, Jones ML. 2021. Serratia plymuthica MBSA-MJ1 increases shoot growth and tissue nutrient concentration in containerized ornamentals grown under low-nutrient conditions. Frontiers in Microbiology 12:788198

doi: 10.3389/fmicb.2021.788198
[125]

Stanley R, Brown M, Poole N, Rogerson M, Sigee DC, et al. 1994. Biocontrol of post-harvest fungal diseases on Dutch white cabbage by Pseudomonas and Serratia antagonists in storage trials. Plant Pathology 43:605−11

doi: 10.1111/j.1365-3059.1994.tb01597.x
[126]

Abd Elgawad Mahfouz MM, Kabeil Sanaa SA. 2012. Biological control of Meloidogyne incognita by Trichoderma harzianum and Serratia marcescens and their related enzymatic changes in tomato roots. African Journal of Biotechnology 11:16247−52

doi: 10.5897/AJB12.233
[127]

Murunde R, Ringo G, Robinson-Boyer L, Xu X, Murunde R, et al. 2023. Applying beneficial microbes as transplanting dipping and posttransplanting foliar spray led to improved rice productivity. Technology in Agronomy 3:7

doi: 10.48130/TIA-2023-0007
[128]

Roberts DP, Selmer K, Lupitskyy R, Rice C, Buyer JS, et al. 2021. Seed treatment with prodigiosin controls damping-off of cucumber caused by Pythium ultimum. AMB Express 11:10

doi: 10.1186/s13568-020-01169-2
[129]

Trinh LL, Nguyen Ngoc MD, Nguyen HH. 2024. Cell-free supernatant crude extracts of mold-competing bacteria protect peanut crops against yellow mold disease caused by Aspergillus flavus AF1. Biocatalysis and Agricultural Biotechnology 56:103028

doi: 10.1016/j.bcab.2024.103028
[130]

Kishore GK, Pande S, Podile AR. 2005. Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defence-related enzymes. Journal of Phytopathology 153:169−73

doi: 10.1111/j.1439-0434.2005.00951.x
[131]

Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Tofazzal Islam M. 2017. Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L. ) in the alluvial soil under Indo-Gangetic Plain of India. Journal of Plant Growth Regulation 36:608−17

doi: 10.1007/s00344-016-9663-5
[132]

Sanjeev Kumar K, Papitha K, Balabaskar P, Kumar S, Sudhasha S. 2021. Mycoparasitic effect of combined application of Serratia marcescens and Allium sativum on the anthracnose (Colletotri chum lindemuthianum (Sacc. & Magnus) Briosi & Cavara) incidence of dolichos bean under in vivo conditions. International Journal of Botany Studies 6:886−89

[133]

Zohar-Perez C, Chet I, Nussinovitch A. 2005. Mutual relationships between soils and biological carrier systems. Biotechnology and Bioengineering 92:54−60

doi: 10.1002/bit.20574
[134]

Johnson VW, Pearson J, Jackson TA. 2001. Formulation of Serratia entomophila for biological control of grass grub. New Zealand Plant Protection 54:125−27

doi: 10.30843/nzpp.2001.54.3752
[135]

Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML. 2021. Microbial inoculants: silver bullet or microbial Jurassic Park? Trends in Microbiology 29:299−308

doi: 10.1016/j.tim.2020.11.006
[136]

Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM. 2019. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Canadian Journal of Microbiology 65:91−104

doi: 10.1139/cjm-2018-0315
[137]

Keswani C, Prakash O, Bharti N, Vílchez JI, Sansinenea E, et al. 2019. Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Science of The Total Environment 690:841−52

doi: 10.1016/j.scitotenv.2019.07.046
[138]

Granada D, López-lujan L, Ramírez-restrepo S, Morales J, Peláez-jaramillo C, et al. 2020. Bacterial extracts and bioformulates as a promising control of fruit body rot and root rot in avocado cv. Hass. Journal of Integrative Agriculture 19:748−58

doi: 10.1016/S2095-3119(19)62720-6
[139]

Restrepo SR, Henao CC, Galvis LMA, Pérez JCB, Sánchez RAH, et al. 2021. Siderophore containing extract from Serratia plymuthica AED38 as an efficient strategy against avocado root rot caused by Phytophthora cinnamomi. Biocontrol Science and Technology 31:284−98

doi: 10.1080/09583157.2020.1846162
[140]

Akatsuka H, Kawai E, Omori K, Shibatani T. 1995. The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide. Journal of Bacteriology 177:6381−89

doi: 10.1128/jb.177.22.6381-6389.1995
[141]

Matilla MA, Leeper FJ, Salmond GPC. 2015. Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq. Environmental Microbio logy 17:2993−3008

doi: 10.1111/1462-2920.12839
[142]

Seyedsayamdost MR, Cleto S, Carr G, Vlamakis H, João Vieira M, et al. 2012. Mixing and matching siderophore clusters: structure and biosynthesis of serratiochelins from serratia sp. V4. Journal of the American Chemical Society 134:13550−53

doi: 10.1021/ja304941d