[1]

Sellera FP, Da Silva LCBA, Lincopan N. 2021. Rapid spread of critical priority carbapenemase-producing pathogens in companion animals: a One Health challenge for a post-pandemic world. Journal of Antimicrobial Chemotherapy 76:2225−29

doi: 10.1093/jac/dkab169
[2]

Pandey, A. and Agnihotri, V. 2015. Antimicrobials from medicinal plants: Research initiatives, challenges, and the future prospects. In Biotechnology of bioactive compounds: sources and applications, eds. Gupta VK, Tuohy MG. UK: John Wiley & Sons. pp. 123−50. doi: 10.1002/9781118733103.ch5

[3]

Adhikari P, Agnihotri V, Suman SK, Pandey A. 2023. Deciphering the antimicrobial potential of Taxus wallichiana Zucc: Identification and Characterization using bioassay-guided fractionation. Chemistry and Biodiversity 20(1):e202200572

doi: 10.1002/cbdv.202200572
[4]

Eloutify YT, El-Shiekh RA, Ibrahim KM, Elshimy R, Avula B, et al. 2023. Bioassay-guided isolation of antimicrobial components and LC/QToF profile of Plumeria obtusa: potential for the treatment of antimicrobial resistance. ACS Omega 8(7):6476−91

doi: 10.1021/acsomega.2c06803
[5]

Krishnamoorthy R, Adhikari P, Anaikutti P. 2023. Design, synthesis, and characterization of non hemolytic antimicrobial peptides related to human cathelicidin LL-37. RSC Advances 13:15594−605

doi: 10.1039/d3ra02473c
[6]

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5(3):93

doi: 10.3390/medicines5030093
[7]

Abubakar AR, Haque M. 2020. Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy & Bioallied Sciences 12(1):1−10

doi: 10.4103/jpbs.JPBS_175_19
[8]

Zhang Y, Cai P, Cheng G, Zhang Y. 2022. A brief review of phenolic compounds identified from plants: their extraction, analysis, and biological activity. Natural Product Communications 17:1934578X2110697

doi: 10.1177/1934578x211069721
[9]

Nadeem M, Rikhari HC, Kumar A, Palni LMS, Nandi SK. 2002. Taxol content in the bark of Himalayan Yew in relation to tree age and sex. Phytochemistry 60:627−31

doi: 10.1016/s0031-9422(02)00115-2
[10]

Agnihotri V. 2023. Taxus baccata subsp. wallichiana (Zucc. ) Pilg. In Himalayan Fruits and Berries, eds. Belwal T, Bhatt I, Devkota H. India: Academic Press, Elsevier. pp. 419−34. doi: 10.1016/b978-0-323-85591-4.00036-2

[11]

Singh H. 2007. Himalyan Yew (Taxus wallichina Zucc.) a multi-purpose rare gymnosperm in India. Indian Forestry 133:690−96

[12]

Sharma H, Garg M. 2015. A review of traditional use, phytoconstituents and biological activities of Himalayan Yew Taxus wallichiana. Journal of Integrative Medicine 13:80−89

doi: 10.1016/S2095-4964(15)60161-3
[13]

Nisar M, Khan I, Ahmad B, Ali I, Ahmad W, et al. 2008. Antifungal and antibacterial activities of Taxus wallichiana Zucc. Journal of Enzyme Inhibition and Medicinal Chemistry 23(2):256−60

doi: 10.1080/14756360701505336
[14]

Juyal D, Thawani V, Thaledi S, Joshi M. 2014. Ethnomedical properties of Taxus wallichiana Zucc. (Himalayan Yew). Journal of Traditional and Complementary Medicine 4:159−61

doi: 10.4103/2225-4110.136544
[15]

Adhikari P, Pandey A, Agnihotri V, Pande V. 2018. Selection of solvent and extraction method for determination of the antimicrobial potential of Taxus wallichiana Zucc. Research in Pharmacy 8:1−9

doi: 10.25081/rip.2018.v8.3487
[16]

Bhardwaj V. 2023. Taxus wallichiana Zucc. (Himalayan Yew): A Medicinal Plant Exhibiting Antibacterial Properties. Advances in Experimental Medicine and Biology 1370:145−53

doi: 10.1007/5584_2023_772
[17]

Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. 2017. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. The Scientific World Journal 2017:5873648

doi: 10.1155/2017/5873648
[18]

Kumaran A, Joel Karunakaran R. 2007. In vitro antioxidant activities of methanol extracts of five Phyllantus species from India. LWT - Food Science and Technology 40(2):344−52

doi: 10.1016/j.lwt.2005.09.011
[19]

Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, et al. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology 72(1-2):35−42

doi: 10.1016/s0378-8741(00)00196-3
[20]

Nwinuka NM, Ibeh GO, Ekeke GI. 2005. Proximate composition and levels of some toxicants in four commonly consumed spices. Journal of Applied Sciences and Environmental Management 9(1):150−55

[21]

Snyder LR. 1978. Classification off the solvent properties of the common liquids. Journal of Chromatographic Science 16:223−34

doi: 10.1093/chromsci/16.6.223
[22]

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. 2017. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(4):42

doi: 10.3390/plants6040042
[23]

Mahdavi S, Kheyrollahi M, Sheikhloei H, Isazadeh A. 2019. Antibacterial and antioxidant activities of Nasturtium officinale essential oil on food borne bacteria. The Open Microbiology Journal 13:81−88

doi: 10.2174/1874285801913010081
[24]

Hussein HM, Hameed IH, Ibraheem OA. 2016. Antimicrobial activity and spectral chemical analysis of methanolic leaves extract of Adiantum capillus veneris using GC-MS and FT-IR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research 8(3):369−385

[25]

Johnson AR, Vitha MF. 2011. Chromatographic selectivity triangles. Journal of Chromatography A 1218:556−86

doi: 10.1016/j.chroma.2010.09.046
[26]

Akhtar MS, Hossain MA, Said SA. 2017. Isolation and characterization of antimicrobial compound from the stem-bark of the traditionally used medicinal plant Adenium obesum. Journal of Traditional and Complementary Medicine 7:296−300

doi: 10.1016/j.jtcme.2016.08.003
[27]

Habib MR, Karim MR. 2009. Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol- 3-acetate isolated from Calotropis gigantea (Linn.) flower. Mycobiology 37(1):31−36

doi: 10.4489/MYCO.2009.37.1.031
[28]

Cunico MM, Garcia AC, Lima CP, Cocco LC. 2012. Bioautography to assess antibacterial activity of Ottonia martiana Miq. (Piperaceae) on the human oral microbiota. Journal of Basic and Applied Pharmaceutical Sciences 33(4):515−519

[29]

Yff BTS, Lindsey KL, Taylor MB, Erasmus DG, Jäger AK. 2002. The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid. Journal of Ethnopharmacology 79:101−7

doi: 10.1016/s0378-8741(01)00380-4
[30]

McGaw LJ, Jäger AK, Van-Staden J. 2002. Antibacterial effects of fatty acids and related compounds from plants. South African Journal of Botany 68:417−23

doi: 10.1016/s0254-6299(15)30367-7
[31]

Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology 85(6):1629−42

doi: 10.1007/s00253-009-2355-3
[32]

Shafaghat A. 2011. Antioxidant, antimicrobial activities and fatty acid components of flower, leaf, stem and seed of Hypericum scabrum. Natural Product Communications 6:1739−42

[33]

Cerdeiras MP, Fernández J, Soubes M, Vero S, Ferreira F, et. al. 2000. 'A new antibacterial compound from Ibicella lutea. Journal of Ethnopharmacology 73:521−25

doi: 10.1016/s0378-8741(00)00339-1
[34]

Brand GD, Magalhães MTQ, Tinoco MLP, Aragão FJL, Nicoli J, et al. 2012. Probing protein sequences as sources for encrypted antimicrobial peptides. PLoS One 7:e45848

doi: 10.1371/journal.pone.0045848
[35]

McClean S, Beggs LB, Welch RW. 2014. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues. Food Chemistry 146:443−47

doi: 10.1016/j.foodchem.2013.09.094
[36]

Rouis-Soussi LS, Ayeb-Zakhama AE, Mahjoub A, Flamini G, Jannet HB, et al. 2014. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. EXCLI Journal 13:526−53