[1] |
Liu C. 2009. Physiology mechanism and differential protein of fraxinus mandshurica somatic embrygenesis acompanied explant browning. Thesis. Northeast Forestry University, China. pp. 21−23 |
[2] |
Wang J, Dong J, Liu W, Cao F, Wang G, et al. 2019. Research on growth, browning and flavonoid accumulation of Ginkgo biloba callus. Biotechnology Bulletin 35:16−22 doi: 10.13560/j.cnki.biotech.bull.1985.2018-0672 |
[3] |
Hao Z, Shi J, Wu H, Yan Y, Xing K, et al. 2023. Phytosulfokine contributes to suspension culture of Cunninghamia lanceolata through its impact on redox homeostasis. BMC Plant Biology 23:480 doi: 10.1186/s12870-023-04496-1 |
[4] |
Zhang D, Wang R, Xiao J, Zhu S, Li X, et al. 2022. An integrated physiology, cytology, and proteomics analysis reveals a network of sugarcane protoplast responses to enzymolysis. Frontiers in Plant Science 13:1066073 doi: 10.3389/fpls.2022.1066073 |
[5] |
Liu J, Zhang X, Poudyal BK, Zhang Y, Dong Z, et al. 2008. Studies on factors affecting browning of pear explants in vitro and anti-browning measures. Journal of Fruit Science 25:727−31 |
[6] |
Duan Y, Guo W. 2009. Study on callus browning in relation to polyphenol content and polyphenol oxidase activity among various citrus embryogenic calli. Chinese Agricultural Science Bulletin 25:117−20 |
[7] |
Li F, Li Z, Gao Z, Wang G, Li H, et al. 2023. A laccase gene (LcLac) was involved in polyphenol metabolism and tissue browning of litchi callus. Scientia Horticulturae 321:112291 doi: 10.1016/j.scienta.2023.112291 |
[8] |
Li JF, Deng Z, Dong H, Tsao R, Liu X. 2023. Substrate specificity of polyphenol oxidase and its selectivity towards polyphenols: unlocking the browning mechanism of fresh lotus root (Nelumbo nucifera Gaertn.). Food Chemistry 424:136392 doi: 10.1016/j.foodchem.2023.136392 |
[9] |
Mahmoud LM, Killiny N, Dutt M. 2024. Melatonin supplementation enhances browning suppression and improves transformation efficiency and regeneration of transgenic rough lemon plants (Citrus × jambhiri). PLoS One 19:e0294318 doi: 10.1371/journal.pone.0294318 |
[10] |
Xu X, Zhu D, Huan Z, Geng X, Ran J. 2023. Mechanisms of tissue culture browning in five Magnoliaceae family species. Plant Cell Tissue and Organ Culture 155:183−95 doi: 10.1007/s11240-023-02568-6 |
[11] |
Kim C, Dai W. 2020. Plant regeneration of red raspberry (Rubus idaeus) cultivars 'Joan J' and 'Polana'. In Vitro Cellular & Developmental Biology - Plant 56:390−97 doi: 10.1007/s11627-019-10051-1 |
[12] |
Wang J, Fang SZ. 2023. Effects of different anti-browning agents on enzyme activity and growth in callus of Cyclocarya paliurus. Journal of Nanjing Forestry University (Natural Sciences Edition), 47:167−74 doi: 10.12302/j.issn.1000-2006.202203071 |
[13] |
Li X, Wang C, Zhu J, He Q, Liu F. 2019. Effect of drying rate on cytochemical localization of phenolic substance and polyphenol oxidase and browning in thompson seedless grape. Science and Technology of Food Industry 40(05):99−107 doi: 10.13386/j.issn1002-0306.2019.05.018 |
[14] |
Bonga JM. 1987. Tree tissue culture applications. Advances in Cell Culture 5:209−39 doi: 10.1016/B978-0-12-007905-6.50012-6 |
[15] |
Cai X, Wei H, Liu C, Ren XX, Thi LT, et al. 2020. Synergistic effect of NaCl pretreatment and PVP on browning suppression and callus induction from petal explants of Paeonia Lactiflora Pall. 'Festival Maxima'. Plants 9:346 doi: 10.3390/plants9030346 |
[16] |
Taghizadeh M, Dastjerdi MG. 2021. Inhibition of browning problem during the callogenesis of Spartium junceum L. Ornamental Horticulture 27:68−77 doi: 10.1590/2447-536x.v27i1.2230 |
[17] |
Tarinejad A. 2013. Effects of disinfectants and antibiotics on contamination during propagation of walnut (Juglans regia L.). Research on Crops 14:219−25 |
[18] |
Fang H, Dong Y, Zhou R, Wang Q, Duan Q, et al. 2022. Optimization of the induction, germination, and plant regeneration system for somatic embryos in apomictic walnut (Juglans regia L.). Plant Cell, Tissue and Organ Culture 150:289−97 doi: 10.1007/s11240-022-02266-9 |
[19] |
Wojtania A, Skrzypek E, Gabryszewska E. 2015. Effect of cytokinin, sucrose and nitrogen salts concentrations on the growth and development and phenolics content in Magnolia × soulangiana 'Coates' shoots in vitro. Acta Scientiarum Polonorum Hortorum Cultus 14:51−62 |
[20] |
Han M, Gleave AP, Wang T. 2010. Efficient transformation of Actinidia arguta by reducing the strength of basal salts in the medium to alleviate callus browning. Plant Biotechnology Reports 4:129−38 doi: 10.1007/s11816-010-0128-1 |
[21] |
Panghal S, Soni SS. 2014. In vitro studies on effect of different concentration of NaCl on Jatropha curcas. Journal of Environmental Biology 35:709−12 |
[22] |
Gou W, Zheng P, Wang K, Zhang L, Akram NA. 2016. Salinity-induced callus browning and re-differentiation, root formation by plantlets and anatomical structures of plantlet leaves in two Malus species. Pakistan Journal of Botany 48:1393−98 |
[23] |
Lai S, Wu Z, Chen J, Ying Y. 2023. Mechanism and regulation of explants browning in tissue culture of Cyclobalanopsis chungii. Forest Science and Technology 66(08):75−78 doi: 10.13456/j.cnki.lykt.2022.09.16.0001 |
[24] |
Li S, Lin L, Jiang T, Zhu J, Liu B. 2023. Callus induction and culture conditions optimization of moso bamboo (Phyllostachys edulis). Molecular Plant Breeding 21:1265−71 doi: 10.13271/j.mpb.021.001265 |
[25] |
Feng J, Zhu C, Cao J, Liu C, Zhang J, et al. 2023. Genome-wide identification and expression analysis of the NRT genes in Ginkgo biloba under nitrate treatment reveal the potential roles during calluses browning. BMC Genomics 24:633 doi: 10.1186/s12864-023-09732-4 |
[26] |
Swarnkar PL, Bohra SP, Chandra N. 1986. Biochemical changes during growth and differentiation of the callus of Solanum surattense. Journal of Plant Physiology 126:75−81 doi: 10.1016/S0176-1617(86)80219-X |
[27] |
Gibson SI. 2000. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiology 124:1532−39 doi: 10.1104/pp.124.4.1532 |
[28] |
Jan R, Khan MA, Asaf S, Lee IJ, Kim KM. 2020. Modulation of sugar and nitrogen in callus induction media alter PAL pathway, SA and biomass accumulation in rice callus. Plant Cell, Tissue and Organ Culture 143:517−30 doi: 10.1007/s11240-020-01938-8 |
[29] |
Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. 2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology 140(2):637−46 doi: 10.1104/pp.105.072579 |
[30] |
Kim SS, Guo DD, Jung DC, Kwon ST. 2003. Multiple shoots regeneration and in vitro bulblet formation from garlic callus. Journal of Plant Biotechnology 5:95−99 |
[31] |
Rahman Z, Ramli A, Kamaruzaman R, Seman Z, Othman A, et al. 2015. Efficient plant regeneration of malaysian aromatic rice (Oryza sativa L.) via improved somatic embryogenesis pathway. Emirates Journal of Food and Agriculture 27:857−63 |
[32] |
Yari Khosroushahi A, Naderi-Manesh H, Toft Simonsen H. 2011. Effect of antioxidants and carbohydrates in callus cultures of Taxus brevifolia: evaluation of browning, callus growth, total phenolics and paclitaxel production. Bioimpacts 1:37−45 doi: 10.5681/bi.2011.006 |
[33] |
Du Y, Li Y, Ma Y, Yang X. 2007. Factors affecting explant browning in tissue culture of Hippophae rhamnoides L. Journal of Agricultural University of Hebei 30:40−43 |
[34] |
Harahap F, Diningrat DS, Poerwanto R, Nasution NEA, Hasibuan RFM. 2019. In vitro callus induction of Sipahutar pineapple (Ananas comosus L.) from north Sumatra Indonesia. Pakistan Journal of Biological Sciences 22(11):518−26 doi: 10.3923/pjbs.2019.518.526 |
[35] |
Ma NL, Khoo SC, Lee JX, Soon CF, Shukor NAB. 2020. Efficient micropropagation of Dendrobium aurantiacum from shoot explant. Plant Science Today 7:476−82 doi: 10.14719/pst.2020.7.3.724 |
[36] |
Zhang D, Wang Y, Shi P, Jin L, Zhao Z, et al. 2019. Different exogenous hormones in the process of callus induction: effects on the browning rate of oil palm leaf. Chinese Agricultural Science Bulletin 35:47−51 |
[37] |
Wang J, Gao J, Fan W, Dong J, Tang F, et al. 2023. Construction of tissue culture system of Onobrychis viciaefolia Scop 'Mengnong' anthers. Legume Research 46:855−61 doi: 10.18805/LRF-729 |
[38] |
Lu Z, Xia Z. 1991. Study on tissue and protoplast culture of wild cotton (Gossypium davidsonii). Acta Botanica Sinica 33:98−103,172 |
[39] |
Shirazi MR, Rahpeyma SA, Zolala J. 2020. A new approach to prevent hazelnut callus browning by modification of sub-culture. Biologia Plantarum 64:417−21 doi: 10.32615/bp.2020.009 |
[40] |
Gao J, Zhang P, Xue J, Xue Y, Wang S, et al. 2019. Advances in phenolic substances and their effects on browning in woody plant tissue culture. Acta Horticulturae Sinica 46:1645−54 doi: 10.16420/j.issn.0513-353x.2018-0698 |
[41] |
Wang Y, Dai X. 2023. Effect of different light treatments on callus formation and browning of Stellaria dichotoma. Journal of Agricultural Sciences 44:34−37 doi: 10.3969/j.issn.1673-0747.2023.01.006 |
[42] |
Yu N. 2020. Optimization on anti-browning culture conditions of young stem tip explants in tissue culture of Ginkgo biloba. Mole cular Plant Breeding 18:6135−42 doi: 10.13271/j.mpb.018.006135 |
[43] |
Chen Y, Lin H, Li Y, Lin M, Chen J. 2019. Non-enzymatic browning and the kinetic model of 5-hydroxymethylfurfural formation in residual solution of vinegar soaked-soybean. Industrial Crops and Products 135:146−52 doi: 10.1016/j.indcrop.2019.04.034 |
[44] |
Embs RJ, Markakis P. 1965. The mechanism of sulfite inhibition of browning caused by polyphenol oxidase. Journal of Food Science 30:753−58 doi: 10.1111/j.1365-2621.1965.tb01836.x |
[45] |
Sae-leaw T, Benjakul S, Simpson BK. 2017. Effect of catechin and its derivatives on inhibition of polyphenoloxidase and melanosis of Pacific white shrimp. Journal of Food Science and Technology 54:1098−107 doi: 10.1007/s13197-017-2556-1 |
[46] |
Ahmad I, Jaskani MJ, Nafees M, Ashraf I, Qureshi R. 2016. Control of media browning in micropropagation of guava (Psidium guajava L.). Pakistan Journal of Botany 48:713−16 |
[47] |
Chi M, Bhagwat B, Lane W, Tang G, Su Y, et al. 2014. Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biology 14:62 doi: 10.1186/1471-2229-14-62 |
[48] |
Pretzler M, Rompel A. 2018. What causes the different functionality in type-III-copper enzymes? A state of the art perspective. Inorganica Chimica Acta 481:25−31 |
[49] |
Laukkanen H, Rautiainen L, Taulavuori E, Hohtola A. 2000. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiology 20:467−75 doi: 10.1093/treephys/20.7.467 |
[50] |
Tang W, Newton RJ. 2004. Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Science 167:621−28 doi: 10.1016/j.plantsci.2004.05.024 |
[51] |
Zhao S, Wang H, Liu K, Li L, Yang J, et al. 2021. The role of JrPPOs in the browning of walnut explants. BMC Plant Biology 21:9 doi: 10.1186/s12870-020-02768-8 |
[52] |
Mittler R. 2017. ROS are good. Trends Plant Science 22:11−19 doi: 10.1016/j.tplants.2016.08.002 |
[53] |
Hesami M, Tohidfar M, Alizadeh M, Daneshvar MH. 2020. Effects of sodium nitroprusside on callus browning of Ficus religiosa: an important medicinal plant. Journal of Forestry Research 31:789−96 doi: 10.1007/s11676-018-0860-x |
[54] |
Tomás-Barberán FA, Espín JC. 2001. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture 81:853−76 doi: 10.1002/jsfa.885 |
[55] |
Pang B, Feng X, Huang J, Zhou Y, Huang Z. 2019. Effects of PBU and 6-BA on POD genes and enzyme activity in Eucalyptus urophyllus callus. Molecular Plant Breeding 17:283−87 doi: 10.13271/j.mpb.017.000283 |
[56] |
Xie J, Qi B, Mou C, Wang L, Jiao Y, et al. 2022. BREVIPEDICELLUS and ERECTA control the expression of AtPRX17 to prevent Arabidopsis callus browning. Journal of Experimental Botany 73:1516−32 doi: 10.1093/jxb/erab512 |
[57] |
Wang X, Zhang X, Jia P, Luan H, Qi G, et al. 2023. Transcriptomics and metabolomics provide insight into the anti-browning mechanism of selenium in freshly cut apples. Frontiers in Plant Science 14:1176936 doi: 10.3389/fpls.2023.1176936 |
[58] |
Wang H, Zhang S, Fu Q, Wang Z, Liu X, et al. 2023. Transcriptomic and metabolomic analysis reveals a protein module involved in preharvest apple peel browning. Plant Physiology 192:2102−22 doi: 10.1093/plphys/kiad064 |
[59] |
Wang P, Zhang L, Zhao L, Zhang X, Zhang H, et al. 2020. Comprehensive analysis of metabolic fluxes from leucoanthocyanins to anthocyanins and proanthocyanidins (PAs). Journal of Agricultural and Food Chemistry 68:15142−53 doi: 10.1021/acs.jafc.0c05048 |
[60] |
Yang X, Xu Q, Le L, Zhou T, Yu W, et al. 2023. Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.). Journal of Forestry Research 34:677−91 doi: 10.1007/s11676-022-01519-9 |
[61] |
Liao L, Vimolmangkang S, Wei G, Zhou H, Korban SS, et al. 2015. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple. Frontiers in Plant Science 6:243 doi: 10.3389/fpls.2015.00243 |
[62] |
Sun HJ, Luo ML, Zhou X, Zhou Q, Sun YY, et al. 2020. PuMYB21/PuMYB54 coordinate to activate PuPLDβ1 transcription during peel browning of cold-stored ‘Nanguo’ pears. Horticulture Research 7:136 doi: 10.1038/s41438-020-00356-3 |
[63] |
Sun Y, Luo M, Ge W, Zhou X, Zhou Q, et al. 2022. Phenylpropanoid metabolism in relation to peel browning development of cold-stored 'Nanguo' pears. Plant Science 322:111363 doi: 10.1016/j.plantsci.2022.111363 |
[64] |
Yang C, Sun N, Qin X, Liu Y, Sui M, et al. 2024. Multi-omics analysis reveals the biosynthesis of flavonoids during the browning process of Malus sieversii explants. Physiologia Plantarum 176:e14238 doi: 10.1111/ppl.14238 |
[65] |
Ackah S, Xue S, Osei R, Kweku-Amagloh F, Zong Y, et al. 2022. Chitosan treatment promotes wound healing of apple by eliciting phenylpropanoid pathway and enzymatic browning of wounds. Frontiers in Microbiology 13:828914 doi: 10.3389/fmicb.2022.828914 |
[66] |
Persic M, Mikulic-Petkovsek M, Halbwirth H, Solar A, Veberic R, et al. 2018. Red walnut: characterization of the phenolic profiles, activities and gene expression of selected enzymes related to the phenylpropanoid pathway in pellicle during walnut development. Journal of Agricultural and Food Chemistry 66:2742−48 doi: 10.1021/acs.jafc.7b05603 |
[67] |
Fraser CM, Chapple C. 2011. The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book 2011:e0152 doi: 10.1199/tab.0152 |
[68] |
Shi R, Shuford CM, Wang JP, Sun YH, Yang Z, et al. 2013. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta 238:487−97 doi: 10.1007/s00425-013-1905-1 |
[69] |
Dong YS, Fu CH, Su P, Xu XP, Yuan J, et al. 2016. Mechanisms and effective control of physiological browning phenomena in plant cell cultures. Physiologia Plantarum 156:13−28 doi: 10.1111/ppl.12382 |
[70] |
Jones AMP, Saxena PK. 2013. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLoS One 8:e76802 doi: 10.1371/journal.pone.0076802 |
[71] |
Chen M, Li H, Zhang W, Huang L, Zhu J. 2022. Transcriptomic analysis of the differences in leaf color formation during stage transitions in Populus × euramericana 'Zhonghuahongye'. Agronomy 12:2396 doi: 10.3390/agronomy12102396 |
[72] |
Coseteng MY, Lee CY. 1987. Changes in apple polyphenoloxidase and polyphenol concentrations in relation to degree of browning. Journal of Food Science 52:985−89 doi: 10.1111/j.1365-2621.1987.tb14257.x |
[73] |
Xu Q, Yang XM, Wang GB, Cao FL. 2023. Transcriptome analysis of browning and non-browning callus of Ginkgo biloba. Molecular Plant Breeding 21:3237−44 |
[74] |
Zhong J. 2019. Preliminary study of tissue culture system of Sapindus mukorossi Gaertn. Thesis. Beijing Forestry University, China. pp. 32−36 |
[75] |
Aghayeh RNM, Abedy B, Balandari A, Samiei L, Tehranifar A. 2021. The first successful report: control of browning problem in in vitro culture of iranian seedless barberry, a medicinally important species. Erwerbs-Obstbau 63:319−29 doi: 10.1007/s10341-021-00574-6 |
[76] |
Tabiyeh DT, Bernard F, Shacker H. 2006. Investigation of glutathione, salicylic acid and GA3 effects on browning in Pistacia vera shoot tips culture. Acta Horticulturae 726:201−04 doi: 10.17660/ActaHortic.2006.726.31 |
[77] |
Chen J. 2011. Study on browning control in Cunninghamia lanceolata callus culture. Subtropical Plant Science 40:47−49 doi: 10.3969/j.issn.1009-7791.2011.03.013 |
[78] |
Rao H, Shao Z, Liu H, Wu Y, Qian P. 2015. Effect of browning inhibitors on callus subculture of phenolic compounds, enzyme and gene expression of grape. Plant Physiology Journal 51:1322−30 |
[79] |
Haque M, Siddique AB, Islam SS. 2015. Effect of silver nitrate and amino acids on high frequency plants regeneration in barley (Hordeum vulgare L.). Plant Tissue Culture and Biotechnology 25:37−50 doi: 10.3329/ptcb.v25i1.24124 |
[80] |
Xi Y, Zeng B, Huang H, Wang Y, Yang P. 2022. Resolving the browning during the establishment of the in vitro propogation of Prunus avium cv. 'Fuchen'. Horticultural Science 49:1−9 doi: 10.17221/51/2020-HORTSCI |
[81] |
Gao J, Xue J, Xue Y, Liu R, Ren X, et al. 2020. Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors. Plant Physiology and Biochemistry 149:36−49 doi: 10.1016/j.plaphy.2020.01.029 |
[82] |
Meziani R, Jaiti F, Mazri MA, Hassani A, Ben Salem S, et al. 2016. Organogenesis of Phoenix dactylifera L. cv. Mejhoul: influences of natural and synthetic compounds on tissue browning, and analysis of protein concentrations and peroxidase activity in explants. Scientia Horticulturae 204:145−52 doi: 10.1016/j.scienta.2016.04.009 |
[83] |
Thomas TD. 2008. The role of activated charcoal in plant tissue culture. Biotechnology Advances 26:618−31 doi: 10.1016/j.biotechadv.2008.08.003 |
[84] |
Deng X, Huang J, Zhang M, Wei X, Song H, et al. 2023. Metabolite profiling and screening of callus browning-related genes in lotus (Nelumbo nucifera). Physiologia Plantarum 175:e14027 doi: 10.1111/ppl.14027 |
[85] |
Pompili V, Mazzocchi E, Moglia A, Acquadro A, Comino C, et al. 2023. Structural and expression analysis of polyphenol oxidases potentially involved in globe artichoke (C. cardunculus var. scolymus L.) tissue browning. Scientific Reports 13:12288 doi: 10.1038/s41598-023-38874-4 |
[86] |
Wang H, Zhang S, Wang Z, Li D, Yan L, et al. 2024. Resistance index and browning mechanism of apple peel under high temperature stress. Horticultural Plant Journal 10:305−17 doi: 10.1016/j.hpj.2022.10.013 |
[87] |
Zhang K, Su J, Xu M, Zhou Z, Zhu X, et al. 2020. A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nature Communication 11:443 doi: 10.1038/s41467-019-14265-0 |
[88] |
Boudet AM. 2007. Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722−35 doi: 10.1016/j.phytochem.2007.06.012 |
[89] |
Wei R, Zhang W, Li C, Hao Z, Huang D, et al. 2023. Establishment of Agrobacterium-mediated transformation system to Juglans sigillata Dode 'Qianhe-7'. Transgenic Research 32:193−207 doi: 10.1007/s11248-023-00348-8 |
[90] |
Cho JS, Nguyen VP, Jeon HW, Kim MH, Eom SH, et al. 2016. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. Tree Physiology 36:1162−76 doi: 10.1093/treephys/tpw046 |
[91] |
Duan J, Yu H, Yuan K, Liao Z, Meng X, et al. 2019. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proceedings of the National Academy of Sciences of the United States of America 116:14319−24 doi: 10.1073/pnas.1810980116 |
[92] |
Hao Z, Wu H, Zheng R, Li R, Zhu Z, et al. 2023. The plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata. The Plant Journal 113:716−33 doi: 10.1111/tpj.16077 |
[93] |
Ikeuchi M, Iwase A, Ito T, Tanaka H, Favero DS, et al. 2022. Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiology 188:425−41 doi: 10.1093/plphys/kiab510 |
[94] |
Yang W, Zhai H, Wu F, Deng L, Chao Y, et al. 2024. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 187:3024−3038.e14 doi: 10.1016/j.cell.2024.04.040 |
[95] |
McFarland FL, Collier R, Walter N, Martinell B, Kaeppler SM, et al. 2023. A key to totipotency: Wuschel-like homeobox 2a unlocks embryogenic culture response in maize (Zea mays L.). Plant Biotechnology Journal 21:1860−72 doi: 10.1111/pbi.14098 |
[96] |
Hassani SB, Trontin JF, Raschke J, Zoglauer K, Rupps A. 2022. Constitutive overexpression of a conifer WOX2 homolog affects somatic embryo development in Pinus pinaster and promotes somatic embryogenesis and organogenesis in Arabidopsis seedlings. Frontiers in Plant Science 13:838421 doi: 10.3389/fpls.2022.838421 |
[97] |
Zhu T, Moschou PN, Alvarez JM, Sohlberg JJ, Von-Arnold S. 2016. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biology 16:19 doi: 10.1186/s12870-016-0706-7 |
[98] |
Li Z, Qian W, Qiu S, Wang W, Jiang M, et al. 2024. Identification and characterization of the WOX gene family revealed two WUS clade members associated with embryo development in Cunninghamia lanceolata. Plant Physiology and Biochemistry 210:108570 doi: 10.1016/j.plaphy.2024.108570 |
[99] |
Lee K, Park OS, Seo PJ. 2018. ATXR2 as a core regulator of de novo root organogenesis. Plant Signaling & Behavior 13:e1449543 doi: 10.1080/15592324.2018.1449543 |
[100] |
Maulidiya AUK, Sugiharto B, Dewanti P, Handoyo T. 2020. Expression of somatic embryogenesis-related genes in sugarcane (Saccharum officinarum L.). Journal of Crop Science and Biotechnology 23:207−14 doi: 10.1007/s12892-020-00024-x |
[101] |
Min L, Hu Q, Li Y, Xu J, Ma Y, et al. 2015. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 network regulates somatic embryogenesis by regulating auxin homeostasis. Plant Physiology 169:2805−21 doi: 10.1104/pp.15.01480 |
[102] |
Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38:1274−79 doi: 10.1038/s41587-020-0703-0 |
[103] |
Yang E, Yang H, Li C, Zheng M, Song H, et al. 2022. Genome-wide identification and expression analysis of the Aux/IAA gene family of the drumstick tree (Moringa oleifera Lam.) reveals regulatory effects on shoot regeneration. International Journal of Molecular Sciences 23:15729 doi: 10.3390/ijms232415729 |
[104] |
Xiong J, Zhang W, Zheng D, Xiong H, Feng X, et al. 2022. ZmLBD5 increases drought sensitivity by suppressing ROS accumulation in Arabidopsis. Plants 11:1382 doi: 10.3390/plants11101382 |
[105] |
Liu S, Wang B, Li X, Pan J, Qian X, et al. 2019. Lateral Organ Boun daries Domain 19 (LBD19) negative regulate callus formation in Arabidopsis. Plant Cell, Tissue and Organ Culture 137:485−94 doi: 10.1007/s11240-019-01584-9 |
[106] |
Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, et al. 2017. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell 29:54−69 doi: 10.1105/tpc.16.00623 |
[107] |
Wang X, Bi C, Wang C, Ye Q, Yin T, et al. 2019. Genome-wide identification and characterization of WUSCHEL-related homeobox (WOX) genes in Salix suchowensis. Journal of Forestry Research 30:1811−22 doi: 10.1007/s11676-018-0734-2 |
[108] |
Wang K, Shi L, Liang X, Zhao P, Wang W, et al. 2022. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants 8:110−17 doi: 10.1038/s41477-021-01085-8 |
[109] |
Liu B, Zhang J, Yang Z, Matsui A, Seki M, et al. 2018. PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology 98:389−406 doi: 10.1007/s11103-018-0786-x |
[110] |
Lv J, Feng Y, Jiang L, Zhang G, Wu T, et al. 2023. Genome-wide identification of WOX family members in nine Rosaceae species and a functional analysis of MdWOX13-1 in drought resistance. Plant Science 328:111564 doi: 10.1016/j.plantsci.2022.111564 |
[111] |
Permadi N, Akbari SI, Prismantoro D, Indriyani NN, Nurzaman M, et al. 2024. Traditional and next-generation methods for browning control in plant tissue culture: current insights and future directions. Current Plant Biology 38:100339 doi: 10.1016/j.cpb.2024.100339 |
[112] |
Feng BS, Kang DC, Sun J, Leng P, Liu LX, et al. 2022. Research on melatonin in fruits and vegetables and the mechanism of exogenous melatonin on postharvest preservation. Food Bioscience 50:102196 doi: 10.1016/j.fbio.2022.102196 |
[113] |
Favre LC, dos Santos C, López-Fernández MP, Mazzobre MF, del Pilar Buera M. 2018. Optimization of β-cyclodextrin-based extraction of antioxidant and anti-browning activities from thyme leaves by response surface methodology. Food Chemistry 265:86−95 doi: 10.1016/j.foodchem.2018.05.078 |
[114] |
Martínez-Hernández GB, Castillejo N, Artés-Hernández F. 2019. Effect of fresh-cut apples fortification with lycopene microspheres, revalorized from tomato by-products, during shelf life. Postharvest Biology and Technology 156:110925 doi: 10.1016/j.postharvbio.2019.05.026 |
[115] |
Xiao Y, He J, Zeng J, Yuan X, Zhang Z, et al. 2020. Application of citronella and rose hydrosols reduced enzymatic browning of fresh-cut taro. Journal of Food Biochemistry 44:e13283 doi: 10.1111/jfbc.13283 |
[116] |
Ranjith FH, Muhialdin BJ, Arroo R, Yusof NL, Mohammed NK, et al. 2022. Lacto-fermented polypeptides integrated with edible coatings for mango (Mangifera indica L.) bio-preservation. Food Control 134:108708 doi: 10.1016/j.foodcont.2021.108708 |
[117] |
Julaeha E, Nurzaman M, Wahyudi T, Nurjanah S, Permadi N, et al. 2022. The development of the antibacterial microcapsules of Citrus essential oil for the cosmetotextile application: a review. Molecules 27:8090 doi: 10.3390/molecules27228090 |