[1]

Nilsson O. 2022. Winter dormancy in trees. Current Biology 32:R630−R634

doi: 10.1016/j.cub.2022.04.011
[2]

Lang GA, Early JD, Martin GC, Darnell RL. 1987. Endodormancy, paradormancy, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371−77

doi: 10.21273/HORTSCI.22.3.371
[3]

Luna V, Reinoso H, Lorenzo E, Bottini R, Abdala G. 1991. Dormancy in peach ( Prunus persica L.) flower buds. Trees 5:244−46

doi: 10.1007/BF00227532
[4]

Atkinson CJ, Brennan RM, Jones HG. 2013. Declining chilling and its impact on temperate perennial crops. Environmental and Experimental Botany 91:48−62

doi: 10.1016/j.envexpbot.2013.02.004
[5]

Campoy JA, Ruiz D, Egea J . 2010. Effects of shading and thidiazuron + oil treatment on dormancy breaking, blooming and fruit set in apricot in a warm-winter climate. Scientia Horticulturae 125:203−10

doi: 10.1016/j.scienta.2010.03.029
[6]

Guillamón JG, Dicenta F, Sánchez-Pérez R. 2021. Advancing endodormancy release in temperate fruit trees using agrochemical treatments. Frontiers in Plant Science 12:812621

doi: 10.3389/fpls.2021.812621
[7]

Ito A, Sakaue T, Fujimaru O, Iwatani A, Ikeda T, et al. 2018. Comparative phenology of dormant Japanese pear (Pyrus pyrifolia) flower buds: a possible cause of 'flowering disorder'. Tree Physiology 38:825−39

doi: 10.1093/treephys/tpx169
[8]

Tominaga A, Ito A, Sugiura T, Yamane H. 2021. How is global warming affecting fruit tree blooming? "Flowering (dormancy) disorder" in Japanese pear (Pyrus pyrifolia) as a case study. Frontiers in Plant Science 12:787638

doi: 10.3389/fpls.2021.787638
[9]

Pagter M, Kjær KH. 2022. Winter warming stimulates vegetative growth and alters fruit quality of blackcurrant (Ribes nigrum). International Journal of Biometeorology 66:1391−401

doi: 10.1007/s00484-022-02284-4
[10]

Olsen JE. 2010. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Molecular Biology 73:37−47

doi: 10.1007/s11103-010-9620-9
[11]

Bielenberg D, Wang Y, Fan S, Reighard GL, Scorza R, Abbott A. 2004. A deletion affecting several gene candidates is present in the Evergrowing peach mutant. Journal of Heredity 95:436−44

doi: 10.1093/jhered/esh057
[12]

Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, et al. 2008. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes 4:495−507

doi: 10.1007/s11295-007-0126-9
[13]

Jiménez S, Lawton-Rauh AL, Reighard GL, Abbott AG, Bielenberg DG. 2009. Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biology 9:81

doi: 10.1186/1471-2229-9-81
[14]

Li Z, Reighard GL, Abbott AG, Bielenberg DG. 2009. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. Journal of Experimental Botany 60:3521−30

doi: 10.1093/jxb/erp195
[15]

Horvath D, Sung S, Kim D, Chao W, Anderson J. 2010. Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Molecular Biology 73:169−79

doi: 10.1007/s11103-009-9596-5
[16]

Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, et al. 2011. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiology 157:485−97

doi: 10.1104/pp.111.181982
[17]

Wu RM, Walton EF, Richardson AC, Wood M, Hellens RP, et al. 2012. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. Journal of Experimental Botany 63:797−807

doi: 10.1093/jxb/err304
[18]

Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K. 2008. Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. Journal of the American Society for Horticultural Science 133:708−16

doi: 10.21273/JASHS.133.5.708
[19]

Saito T, Bai S, Ito A, Sakamoto D, Saito T, et al. 2013. Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiology 33:654−67

doi: 10.1093/treephys/tpt037
[20]

Wu R, Tomes S, Karunairetnam S, Tustin SD, Hellens RP, et al. 2017. SVP-like MADS box genes control dormancy and budbreak in apple. Frontiers in Plant Science 8:477

doi: 10.3389/fpls.2017.00477
[21]

Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, et al. 2011. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in Populus. The Plant Cell 23:130−46

doi: 10.1105/tpc.110.081307
[22]

Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, et al. 2010. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. The Plant Journal 62:674−88

doi: 10.1111/j.1365-313X.2010.04185.x
[23]

Voogd C, Wang T, Varkonyi-Gasic E. 2015. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. Journal of Experimental Botany 66:4699−710

doi: 10.1093/jxb/erv234
[24]

Li J, Xu Y, Niu Q, He L, Teng Y, et al. 2018. Abscisic acid (ABA) promotes the induction and maintenance of pear (Pyrus pyrifolia white pear group) flower bud endodormancy. International Journal of Molecular Sciences 19:310

doi: 10.3390/ijms19010310
[25]

Li S, Wang Q, Wen B, Zhang R, Jing X, et al. 2021. Endodormancy release can be modulated by the GA4-GID1c-DELLA2 module in peach leaf buds. Frontiers in Plant Science 12:713514

doi: 10.3389/fpls.2021.713514
[26]

Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39

doi: 10.1038/nrg3291
[27]

Zhang J, Li Z, Mei L, Yao J, Hu C. 2009. PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229:847−59

doi: 10.1007/s00425-008-0885-z
[28]

Kumar G, Arya P, Gupta K, Randhawa V, Acharya V, et al. 2016. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malus × domestica). Scientific Reports 6:20695

doi: 10.1038/srep20695
[29]

Porto DD, Bruneau M, Perini P, Anzanello R, Renou JP, et al. 2015. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes. Journal of Experimental Botany 66:2659−72

doi: 10.1093/jxb/erv061
[30]

Miotto Y, Tessele C, Czermainski A, Porto D, Falavigna V, et al. 2019. Spring is coming: genetic analyses of the bud break bate locus reveal candidate genes from the cold perception pathway to dormancy release in apple (Malus × domestica Borkh.). Frontiers in Plant Science 10:33

doi: 10.3389/fpls.2019.00033
[31]

Nishiyama S, Matsushita MC, Yamane H, Honda C, Okada K, et al. 2021. Functional and expressional analyses of apple FLC-like in relation to dormancy progress and flower bud development. Tree Physiology 41:562−70

doi: 10.1093/treephys/tpz111
[32]

Voogd C, Brian LA, Wu R, Wang T, Allan AC, et al. 2022. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. New Phytologist 233:2111−26

doi: 10.1111/nph.17916
[33]

James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, et al. 2012. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. The Plant Cell 24:961−81

doi: 10.1105/tpc.111.093948
[34]

Wright CJ, Smith CWJ, Jiggins CD. 2022. Alternative splicing as a source of phenotypic diversity. Nature Reviews Genetics 23:697−710

doi: 10.1038/s41576-022-00514-4
[35]

Gallegos J. 2018. Alternative splicing plays a major role in plant response to cold temperatures. The Plant Cell 30:1378−79

doi: 10.1105/tpc.18.00430
[36]

Seo PJ, Park MJ, Park CM. 2013. Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. Planta 237:1415−24

doi: 10.1007/s00425-013-1882-4
[37]

John S, Olas JJ, Mueller-Roeber B. 2021. Regulation of alternative splicing in response to temperature variation in plants. Journal of Experimental Botany 72:6150−63

doi: 10.1093/jxb/erab232
[38]

Li J, Yan X, Ahmad M, Yu W, Song Z, et al. 2021. Alternative splicing of the dormancy-associated MADS-box transcription factor gene PpDAM1 is associated with flower bud dormancy in 'Dangshansu' pear (Pyrus pyrifolia white pear group). Plant Physiology and Biochemistry 166:1096−108

doi: 10.1016/j.plaphy.2021.07.017
[39]

Hao J, Gao Y, Xue J, Yang Y, Yin J, et al. 2022. Phytochemicals, pharmacological effects and molecular mechanisms of mulberry. Foods 11:1170

doi: 10.3390/foods11081170
[40]

Hasegawa K, Tsuboi A. 1960. The effect of low temperature on the breaking of rest for winter bud in mulberry tree. The Journal of Sericultural Science of Japan 29:63−68

doi: 10.11416/kontyushigen1930.29.63
[41]

Zhu Z, Yu C, Dong Z, Mo R, Zhang C, et al. 2024. Phylogeny and fungal community structures of Helotiales associated with sclerotial disease of mulberry fruits in China. Plant Disease 108:502−12

doi: 10.1094/PDIS-02-23-0223-RE
[42]

Lü R, Zhao A, Yu J, Wang C, Liu C, et al. 2017. Biological and epidemiological characteristics of the pathogen of hypertrophy sorosis scleroteniosis, Ciboria shiraiana. Wei Sheng Wu Xue Bao 57:388−98

doi: 10.13343/j.cnki.wsxb.20160258
[43]

Luo Y, Li H, Xiang Z, He N. 2018. Identification of Morus notabilis MADS-box genes and elucidation of the roles of MnMADS33 during endodormancy. Scientific Reports 8:5860

doi: 10.1038/s41598-018-23985-0
[44]

Qi X, Shuai Q, Chen H, Fan L, Zeng Q, et al. 2014. Cloning and expression analyses of the anthocyanin biosynthetic genes in mulberry plants. Molecular Genetics and Genomics 289:783−93

doi: 10.1007/s00438-014-0851-3
[45]

He N, Zhang C, Qi X, Zhao S, Tao Y, et al. 2013. Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications 4:2445

doi: 10.1038/ncomms3445
[46]

Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31:3497−500

doi: 10.1093/nar/gkg500
[47]

Walton W. 1959. Results of test drilling and aquifer tests in Jerome, Lincoln, and Minidoka counties, Idaho. Report. pp. 58−108. doi:10.3133/ofr58108

[48]

El-Sese A, Mohamed A. 2003. Chilling, heat requirements and hormonal control in relation to bud dormancy in red roomy and thompson seedless grape cultivars, (Vitis vinifera L.). Assiut Journal of Agricultural Sciences 34:221−36

[49]

Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, et al. 2014. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Molecular Cell 54:156−65

doi: 10.1016/j.molcel.2014.03.026
[50]

Xiong F, Ren JJ, Yu Q, Wang YY, Lu CC, et al. 2019. AtU2AF65b functions in abscisic acid mediated flowering via regulating the precursor messenger RNA splicing of ABI5 and FLC in Arabidopsis. New Phytologist 223:277−92

doi: 10.1111/nph.15756
[51]

Kang Y, Yang D, Kong L, Hou M, Meng Y, et al. 2017. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research 45:W12−W16

doi: 10.1093/nar/gkx428
[52]

Wang W, Liu D, Chen D, Cheng Y, Zhang X, et al. 2019. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biology 16:362−75

doi: 10.1080/15476286.2019.1574163
[53]

Zhu Z, An F, Feng Y, Li P, Xue L, et al. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108:12539−44

doi: 10.1073/pnas.1103959108
[54]

Li T, Qi X, Zeng Q, Xiang Z, He N. 2014. MorusDB: a resource for mulberry genomics and genome biology. Database 2014:bau054

doi: 10.1093/database/bau054
[55]

Horvath DP, Anderson JV, Chao WS, Foley ME. 2003. Knowing when to grow: signals regulating bud dormancy. Trends in Plant Science 8:534−40

doi: 10.1016/j.tplants.2003.09.013
[56]

Amasino R. 2004. Vernalization, competence, and the epigenetic memory of winter. The Plant Cell 16:2553−59

doi: 10.1105/tpc.104.161070
[57]

Purvis ON, Gregory FG. 1952. Studies in vernalisation XII. The reversibility by high temperature of the vernalised condition in petkus winter rye. Annals of Botany 16:1−21

doi: 10.1093/oxfordjournals.aob.a083297
[58]

Erez A, Couvillon GA, Hendershott CH. 1979. The effect of cycle length on chilling negation by high temperatures in dormant peach leaf buds. Journal of the American Society for Horticultural Science 104:573−76

doi: 10.21273/JASHS.104.4.573
[59]

Chouard P. 1960. Vernalization and its relations to dormancy. Annual Review of Plant Physiology 11:191−238

doi: 10.1146/annurev.pp.11.060160.001203
[60]

Horvath D. 2009. Common mechanisms regulate flowering and dormancy. Plant Science 177:523−31

doi: 10.1016/j.plantsci.2009.09.002
[61]

Brunner AM, Evans LM, Hsu CY, Sheng X. 2014. Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation? Frontiers in Plant Science 5:732

doi: 10.3389/fpls.2014.00732
[62]

Song J, Irwin J, Dean C. 2013. Remembering the prolonged cold of winter. Current Biology 23:R807−R811

doi: 10.1016/j.cub.2013.07.027
[63]

Chiang GCK, Barua D, Kramer EM, Amasino RM, Donohue K. 2009. Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 106:11661−66

doi: 10.1073/pnas.090136710
[64]

Blair L, Auge G, Donohue K. 2017. Effect of FLOWERING LOCUS C on seed germination depends on dormancy. Functional Plant Biology 44:493−506

doi: 10.1071/FP16368
[65]

Chen M, Penfield S. 2018. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 360:1014−17

doi: 10.1126/science.aar7361
[66]

Liu Y, Dreni L, Zhang H, Zhang X, Li N, et al. 2022. A tea plant (Camellia sinensis) FLOWERING LOCUS C-like gene, CsFLC1, is correlated to bud dormancy and triggers early flowering in Arabidopsis. International Journal of Molecular Sciences 23:15711

doi: 10.3390/ijms232415711
[67]

Chen W, Tamada Y, Yamane H, Matsushita M, Osako Y, et al. 2022. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The Plant Journal 111:1015−31

doi: 10.1111/tpj.15868
[68]

Calixto CPG, Tzioutziou NA, James AB, Hornyik C, Guo W, et al. 2019. Cold-dependent expression and alternative splicing of Arabidopsis long non-coding RNAs. Frontiers in Plant Science 10:235

doi: 10.3389/fpls.2019.00235
[69]

Leviatan N, Alkan N, Leshkowitz D, Fluhr R. 2013. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray. PLoS One 8:e66511

doi: 10.1371/journal.pone.0066511
[70]

Liu JJ, Ekramoddoullah AKM. 2006. The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology 68:3−13

doi: 10.1016/j.pmpp.2006.06.004
[71]

Lopes NDS, Santos AS, Silva de Novais DP, Pirovani CP, Micheli F. 2023. Pathogenesis-related protein 10 in resistance to biotic stress: progress in elucidating functions, regulation and modes of action. Frontiers in Plant Science 14:1193873

doi: 10.3389/fpls.2023.1193873
[72]

Desouky AF, Ahmed AHH, Stützel H, Jacobsen HJ, Pao YC, et al. 2021. Enhanced abiotic stress tolerance of Vicia faba L. plants heterologously expressing the PR10a gene from potato. Plants 10:173

doi: 10.3390/plants10010173
[73]

Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Fujikawa S. 2004. Accumulation of pathogenesis-related (PR) 10/Bet v 1 protein homologues in mulberry (Morus bombycis Koidz.) tree during winter. Plant, Cell & Environment 27:1112−21

doi: 10.1111/j.1365-3040.2004.01216.x
[74]

Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, et al. 2002. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. The Plant Journal 31:319−30

doi: 10.1046/j.1365-313X.2002.01364.x
[75]

Ekramoddoullah AKM, Taylor D, Hawkins BJ. 1995. Characterization of a fall protein of sugar pine and detection of its homologue associated with frost hardiness of western white pine needles. Canadian Journal of Forest Research 25:1137−47

doi: 10.1139/x95-126
[76]

Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. 2018. Mechanism of stomatal closure in plants exposed to drought and cold stress. In Survival Strategies in Extreme Cold and Desiccation, vol 1081, eds Iwaya-Inoue M, Sakurai M, Uemura M. pp. 215−32. doi: 10.1007/978-981-13-1244-1_12

[77]

Yu J, Cang J, Lu Q, Fan B, Xu Q, et al. 2020. ABA enhanced cold tolerance of wheat 'dn1' via increasing ROS scavenging system. Plant Signaling & Behavior 15:1780403

doi: 10.1080/15592324.2020.1780403