[1] |
Ghorai AK, Dutta S, Roy Barman A. 2022. Genetic diversity of Ralstonia solanacearum causing vascular bacterial wilt under different agro-climatic regions of West Bengal, India. PLoS One 17:e0274780 doi: 10.1371/journal.pone.0274780 |
[2] |
Cen Y, Huang Y, Hu S, Zhang L, Zhang J. 2022. Early detection of bacterial wilt in tomato with portable hyperspectral spectrometer. Remote Sensing 14(12):2882 doi: 10.3390/rs14122882 |
[3] |
Ramesh R, D'Souza M, Asolkar T, Achari G, Gupta MJ. 2022. Rootstocks for the management of bacterial wilt in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.) in the coastal regions of India. Advances in Agriculture 2022:8594080 doi: 10.1155/2022/8594080 |
[4] |
Yin J, Zhang Z, Zhu C, Wang T, Wang R, et al. 2022. Heritability of tomato rhizobacteria resistant to Ralstonia solanacearum. Microbiome 10:227 doi: 10.1186/s40168-022-01413-w |
[5] |
Subedi N, Gilbertson RL, Osei MK, Cornelius E, Miller SA. 2014. First report of bacterial wilt caused by Ralstonia solanacearum in Ghana, West Africa. Plant Disease 98(6):840 doi: 10.1094/PDIS-09-13-0963-PDN |
[6] |
Dossoumou ME, Sikirou R, Adandonon A, Gonroudobou J, Baba-Moussa L. 2021. Tomato hybrid and local varieties screened for resistance to bacterial wilt caused by Ralstonia solanacearum under screen house and field conditions. American Journal of Plant Sciences 12(8):1222−35 doi: 10.4236/ajps.2021.128085 |
[7] |
Barik S, Reddy AC, Ponnam N, Kumari M, Acharya GC, et al. 2020. Breeding for bacterial wilt resistance in eggplant (Solanum melongena L. ): progress and prospects. Crop Protection 137:105270 doi: 10.1016/j.cropro.2020.105270 |
[8] |
Chen K, Ali Khan RA, Cao W, Ling M. 2020. Sustainable and ecofriendly approach of managing soil born bacterium Ralstonia solanacearum (smith) using dried powder of Conyza canadensis. Pathogens 9(5):327 doi: 10.3390/pathogens9050327 |
[9] |
Namisy A, Chen JR, Prohens J, Metwally E, Elmahrouk M, et al. 2019. Screening cultivated eggplant and wild relatives for resistance to bacterial wilt (Ralstonia solanacearum). Agriculture 9:157 doi: 10.3390/agriculture9070157 |
[10] |
Boschi F, Schvartzman C, Murchio S, Ferreira V, Siri MI, et al. 2017. Enhanced bacterial wilt resistance in potato through expression of Arabidopsis EFR and introgression of quantitative resistance from Solanum commersonii. Frontiers in Plant Science 8:1642 doi: 10.3389/fpls.2017.01642 |
[11] |
Yuliar, Nion YA, Toyota K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments 30(1):1−11 doi: 10.1264/jsme2.ME14144 |
[12] |
Manickam R, Chen JR, Sotelo-Cardona P, Kenyon L, Srinivasan R. 2021. Evaluation of different bacterial wilt resistant eggplant rootstocks for grafting tomato. Plants 10:75 doi: 10.3390/plants10010075 |
[13] |
Suchoff DH, Louws FJ, Gunter CC. 2019. Yield and disease resistance for three bacterial wilt-resistant tomato rootstocks. HortTechnology 29(3):330−37 doi: 10.21273/horttech04318-19 |
[14] |
Grieneisen ML, Aegerter BJ, Scott Stoddard C, Zhang M. 2018. Yield and fruit quality of grafted tomatoes, and their potential for soil fumigant use reduction. A meta-analysis. Agronomy for Sustainable Development 38:29 doi: 10.1007/s13593-018-0507-5 |
[15] |
Davoudpour Y, Schmidt M, Calabrese F, Richnow HH, Musat N. 2020. High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds. PLoS One 15:e0242247 doi: 10.1371/journal.pone.0242247 |
[16] |
Newton B-Mensah I, Osei K, Prempeh RNA. 2021. Screening tomato genotypes for bacterial wilt disease (Ralstonia solanacearum) resistance in Ghana. European Journal of Agriculture and Food Sciences 3(5):1−8 doi: 10.24018/ejfood.2021.3.5.277 |
[17] |
Sharma D, Singh Y. 2019. Characterization of Ralstonia solanacearum isolates using biochemical, cultural, molecular methods and pathogenicity tests. Journal of Pharmacognosy and Phytochemistry 8(4):2884−89 |
[18] |
Aslam MN, Mukhtar T, Hussain MA, Raheel M. 2017. Assessment of resistance to bacterial wilt incited by Ralstonia solanacearum in tomato germplasm. Journal of Plant Diseases and Protection 124:585−90 doi: 10.1007/s41348-017-0100-1 |
[19] |
Doyle JJ. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13−15 |
[20] |
Fegan M, Prior P. 2005. How complex is the Ralstonia solanacearum species complex? In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, eds Allen C, Prior P, Hayward AC. Minnesota: APS Press. pp. 449−61 |
[21] |
Bamazi B, Banito A, Ayisah KD, Sikirou R, Paret ML, et al. 2022. Distribution and incidence of tomato bacterial wilt caused by Ralstonia solanacearum in the central region of Togo. Plant Health Progress 23:235−40 doi: 10.1094/php-09-21-0117-s |
[22] |
Ayisah KD, Simiti K, Aziadekey MK. 2019. Prevalence and occurrence of various wilt pathogens associated with tomato (Solanum lycopersicum L.) in Togo. Asian Journal of Agricultural and Horticultural Research 4(4):1−9 doi: 10.9734/ajahr/2019/v4i430032 |
[23] |
Sikirou R, Dossoumou ME, Honfoga J, Afari-Sefa V, Srinivasan R, et al. 2021. Screening of Amaranthus sp. varieties for resistance to bacterial wilt caused by Ralstonia solanacearum. Horticulturae 7(11):465 doi: 10.3390/horticulturae7110465 |
[24] |
Stella K, Maina M, Jesca M. 2020. Identification of Ralstonia solanacearum resistant rootstocks for tomato grafting. Journal of Animal & Plant Sciences 43(3):7452−57 doi: 10.35759/janmplsci.v43-3.1 |
[25] |
Wang JF, Ho FI, Truong HTH, Huang SM, Balatero CH, et al. 2013. Identification of major QTLs associated with stable resistance of tomato cultivar 'Hawaii 7996' to Ralstonia solanacearum. Euphytica 190:241−52 doi: 10.1007/s10681-012-0830-x |
[26] |
Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, et al. 2006. Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theoretical and Applied Genetics 113:110−21 doi: 10.1007/s00122-006-0277-3 |
[27] |
Lavale SA, Debnath P, Mathew D, Abdelmotelb KF. 2022. Two decades of omics in bacterial wilt resistance in Solanaceae, what we learned? Plant Stress 5:100099 doi: 10.1016/j.stress.2022.100099 |
[28] |
Olasanmi B, Kyallo M, Yao N. 2021. Marker-assisted selection complements phenotypic screening at seedling stage to identify cassava mosaic disease-resistant genotypes in African cassava populations. Scientific Reports 11:2850 doi: 10.1038/s41598-021-82360-8 |
[29] |
Wang JF, Lin CH. 2005. Integrated management of tomato bacterial wilt. Shanhua, Tainan: AVRDC - The World Vegetable Center. 12 pp. https://avrdc.org/wpfb-file/bact_wilt_tomato-pdf/ |