[1] |
Nie J, Wang Y, He H, Guo C, Zhu W, et al. 2015. Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis Sativus L.). Frontiers in Plant Science 6:1155 doi: 10.3389/fpls.2015.01155 |
[2] |
Zhang P, Zhu Y, Wang L, Chen L, Zhou S, et al. 2015. Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. BMC Genomics 16:1058 doi: 10.1186/s12864-015-2041-z |
[3] |
Khan MR, Rizvi TF. 2020. Effect of elevated levels of CO2 on powdery mildew development in five cucurbit species. Scientific Reports 10:4986 doi: 10.1038/s41598-020-61790-w |
[4] |
Nie J, Pan J, He H, Si L, Cai R, et al. 2011. SSR Inheritance Analysis and Screening for Linked Marker of Powdery. China Vgetables 10:45−49 |
[5] |
Han H, Xie B. 2012. Status and prospects of powdery mildew resistance breeding in cucurbits. China Cucurbits and Vegetables 25:43−48 doi: 10.3969/j.issn.1673-2871.2012.04.014 |
[6] |
Xu Q, Shi Y, Yu T, Xu X, Yan Y, et al. 2016. Whole-genome resequencing of a cucumber chromosome segment substitution line and its recurrent parent to identify candidate genes governing powdery mildew resistance. PLoS One 11(10):e0164469 doi: 10.1371/journal.pone.0164469 |
[7] |
Zhang C, Badri Anarjan M, Win KT, Begum S, Lee S. 2021. QTL-seq analysis of powdery mildew resistance in a Korean cucumber inbred line. Theoretical and Applied Genetics 134:435−51 doi: 10.1007/s00122-020-03705-x |
[8] |
Ma M, Yang L, Hu Z, Mo C, Geng S, et al. 2024. Multiplex gene editing reveals cucumber MILDEW RESISTANCE LOCUS O family roles in powdery mildew resistance. Plant Physiology 195:1069−88 doi: 10.1093/plphys/kiae047 |
[9] |
Jia Z, Liu F, Mu W, Wei G, Liu Y. 2006. Study on the inoculation and fungicide sensitivity assay method of Sphaerotheca fuliginea on cucumber. Journal of Plant Protection 33:99−103 doi: 10.3321/j.issn:0577-7518.2006.01.020 |
[10] |
Wang P, Zhang H, Jin H, Ding X, Yu J, et al. 2016. Effects of high temperature treatment on powdery mildew control the growth, physiological mechanisms of cucumber (Cucumis sativus L.). Acta Agriculturae Shanghai 32:7−13 doi: 10.15955/j.issn1000-3924.2016.02.02 |
[11] |
Xu Y, Zhu Y, Wang X, Hong Z, Yang A, et al. 2023. PACLOBUTRAZOL-RESISTANCE4 positively regulates cell expansion to promote tendril elongation in cucumber. Plant Physiology 192:2756−67 doi: 10.1093/plphys/kiad245 |
[12] |
Nie J, He H, Peng J, Yang X, Bie B, et al. 2015. Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Molecular Breeding 35:7 doi: 10.1007/s11032-015-0206-8 |
[13] |
Wang D, Tian L, Li D, Li Z, Hu X, et al. 2010. Inoculation method and inoculum concentration of melon powdery mildew at seedling stage. Northern Horticulture 11:185−86 |
[14] |
Kang B, Hao X, Wu H, Peng B, Liu L, et al. 2022. Identification method of resistance to powdery mildew in melon at seedling stag. China Cucurbits and Vegetables 35:22−26 doi: 10.16861/j.cnki.zggc.2022.0260 |
[15] |
Wang L, Wang X, Song J, Zhang X, Tian M, et al. 2020. Screenings of the identification method at seedling stage in indoor and the resistant germplasm resources of muskmelon to powdery mildew in Ningxia. China Cucurbits and Vegetables 33:11−15 doi: 10.16861/j.cnki.zggc.2020.0183 |
[16] |
Liu D, Cheng H , Kong W, Su Y, Xu Y, et al. 2010. Identification of physiological races of powdery mildew on melon in Gansu Province. China Vegetables 6:28−32 doi: 10.19928/j.cnki.1000-6346.2010.06.006 |
[17] |
Li S, Wang P, Yang Y, Zhang L, Liu Q, et al. 2020. Identification of powdery mildew physiological race in seed-used pumpkin (Cucurbita pepo L.) and genetic analysis of its resistance. China Vegetables 11:72−79 doi: 10.19928/j.cnki.1000-6346.2020.11.010 |
[18] |
Gao Q, Sun J, Wang G, He H, Cai R, et al. 2021. The infection process of Sphaerotheca fuliginea on different resistant cucumber materials. Plant Protection 47:28−36 doi: 10.16688/j.zwbh.2019640 |
[19] |
Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, et al. 2012. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology 13:1−16 doi: 10.1111/j.1364-3703.2011.00728.x |
[20] |
Jankovics T, Komáromi J, Fábián A, Jäger K, Vida G, et al. 2015. New insights into the life cycle of the wheat powdery mildew: direct observation of ascosporic infection in Blumeria graminis f. sp. tritici. Phytopathology 105:797−804 doi: 10.1094/PHYTO-10-14-0268-R |
[21] |
Tayeh C, Randoux B, Tisserant B, Khong G, Jacques P, et al. 2015. Are ineffective defence reactions potential target for induced resistance during the compatible wheat-powdery mildew interaction? Plant Physiology and Biochemistry 96:9−19 doi: 10.1016/j.plaphy.2015.07.015 |
[22] |
Zhu M, Riederer M, Hildebrandt U. 2017. Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis. Fungal Biology 121:716−28 doi: 10.1016/j.funbio.2017.05.003 |
[23] |
Gadoury D, Wakefield LM, Cadle-Davidson L, Dry IB, Seem RC, et al. 2012. Effects of prior vegetative growth, inoculum density, light, and mating on conidiation of Erysiphe necator. Phytopathology 102:65−72 doi: 10.1094/PHYTO-03-11-0085 |
[24] |
Ben-naim Y, Cohen Y. 2015. Inheritance of resistance to powdery mildew race 1W in watermelon. Phytopathology 105:1446−57 doi: 10.1094/PHYTO-02-15-0048-R |
[25] |
Kitaoa M, Utsugia H, Kuramotob S, Tabuchib R, Fujimotoc K, et al. 2003. Light-dependent photosynthetic characteristics indicated by chlorophyll fluorescence in five mangrove species native to Pohnpei Island, Micronesia. Physiologia Plantarum 117:376−82 doi: 10.1034/j.1399-3054.2003.00042.x |
[26] |
Tatagiba SD, DaMatta FM, Rodrigues FÁ. 2015. Leaf gas exchange and chlorophyll a fluorescence imaging of rice leaves infected with Monographella albescens. Phytopathology 105:180−88 doi: 10.1094/PHYTO-04-14-0097-R |
[27] |
Zhang D, Wu S, Li N, Gao J, Liu S, et al. 2022. Chemical induction of leaf senescence and powdery mildew resistance involves ethylene-mediated chlorophyll degradation and ROS metabolism in cucumber. Horticulture Research 9:uhac101 doi: 10.1093/hr/uhac101 |
[28] |
Zhang Y, Dong W, Zhao C, Ma H. 2022. Comparative transcriptome analysis of resistant and susceptible Kentucky bluegrass varieties in response to powdery mildew infection. BMC Plant Biology 22:509 doi: 10.1186/s12870-022-03883-4 |
[29] |
Zhang R, Peng D, Wu Y, Li S, Xiao Y, et al. 2017. Resistance identification method of melon powdery mildew at seedling. China Cucurbits and Vegetables 30:25−26,29 doi: 10.16861/j.cnki.zggc.2017.0030 |
[30] |
Zhang H, Fang W, Liu C, Zhao W, Peng Y, et al. 2014. Identification of Magnaporthe oryzae pathotypes by wounding inoculation of detached rice leaves. Plant Protection 40:121−25 doi: 10.3969/j.issn.05291542.2014.05.022 |
[31] |
Deng L, Liao X, Wang H, Hu J, Yang J, et al. 2015. Research of detached leaf inoculation for powdery mildew of melon. China Cucurbits and Vegetables 28:18−21,29 doi: 10.16861/j.cnki.zggc.2015.03.006 |