[1]

Hultine KR, Hernández-Hernández T, Williams DG, Albeke SE, Tran N, et al. 2023. Global change impacts on cacti (Cactaceae): current threats, challenges and conservation solutions. Annals of Botany 132:671−83

doi: 10.1093/aob/mcad040
[2]

Liu L, Wang X, Chang C. 2022. Toward a smart skin: harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. Frontiers in Plant Science 13:961829

doi: 10.3389/fpls.2022.961829
[3]

García-Coronado H, Tafolla-Arellano JC, Hernández-Oñate MÁ, Burgara-Estrella AJ, Robles-Parra JM, et al. 2022. Molecular biology, composition and physiological functions of cuticle lipids in fleshy fruits. Plants 11:1133

doi: 10.3390/plants11091133
[4]

Matas AJ, Yeats TH, Buda GJ, Zheng Y, Chatterjee S, et al. 2011. Tissue- and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation. The Plant Cell 23:3893−910

doi: 10.1105/tpc.111.091173
[5]

Albert Z, Ivanics B, Molnár A, Miskó A, Tóth M, et al. 2013. Candidate genes of cuticle formation show characteristic expression in the fruit skin of apple. Plant Growth Regulation 70:71−78

doi: 10.1007/s10725-012-9779-y
[6]

Alkio M, Jonas U, Declercq M, Van Nocker S, Knoche M. 2014. Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes. Horticulture Research 1:11

doi: 10.1038/hortres.2014.11
[7]

Tafolla-Arellano JC, Zheng Y, Sun H, Jiao C, Ruiz-May E, et al. 2017. Transcriptome analysis of mango (Mangifera indica L.) fruit epidermal peel to identify putative cuticle-associated genes. Scientific Reports 7:46163

doi: 10.1038/srep46163
[8]

Wu X, Shi X, Bai M, Chen Y, Li X, et al. 2019. Transcriptomic and gas chromatography–mass spectrometry metabolomic profiling analysis of the epidermis provides insights into cuticular wax regulation in developing 'Yuluxiang' pear fruit. Journal of Agricultural and Food Chemistry 67:8319−31

doi: 10.1021/acs.jafc.9b01899
[9]

Xiao F, Mark Goodwin S, Xiao Y, Sun Z, Baker D, et al. 2004. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. The EMBO Journal 23:2903−13

doi: 10.1038/sj.emboj.7600290
[10]

Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, et al. 2009. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proceedings of the National Academy of Sciences of the United States of America 106:22008−13

doi: 10.1073/pnas.0909090106
[11]

Sauveplane V, Kandel S, Kastner PE, Ehlting J, Compagnon V, et al. 2009. Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. The FEBS Journal 276:719−35

doi: 10.1111/j.1742-4658.2008.06819.x
[12]

Grausem B, Widemann E, Verdier G, Nosbüsch D, Aubert Y, et al. 2014. CYP77A19 and CYP77A20 characterized from Solanum tuberosum oxidize fatty acids in vitro and partially restore the wild phenotype in an Arabidopsis thaliana cutin mutant. Plant, Cell & Environment 37:2102−15

doi: 10.1111/pce.12298
[13]

Yang L, Shi C, Mu X, Liu C, Shi K, et al. 2015. Cloning and expression of a wild eggplant cytochrome P450 gene, StoCYP77A2, involved in plant resistance to Verticillium dahliae. Plant Biotechnology Reports 9:167−77

doi: 10.1007/s11816-015-0355-6
[14]

Ge S, Qin K, Ding S, Yang J, Jiang L, et al. 2022. Gas chromatography–mass spectrometry metabolite analysis combined with transcriptomic and proteomic provide new insights into revealing cuticle formation during pepper development. Journal of Agricultural and Food Chemistry 70:12383−97

doi: 10.1021/acs.jafc.2c04522
[15]

Luo B, Xue XY, Hu WL, Wang LJ, Chen XY. 2007. An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant and Cell Physiology 48:1790−802

doi: 10.1093/pcp/pcm152
[16]

Bird D, Beisson F, Brigham A, Shin J, Greer S, et al. 2007. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. The Plant Journal 52:485−98

doi: 10.1111/j.1365-313X.2007.03252.x
[17]

McFarlane HE, Shin JJH, Bird DA, Samuels AL. 2010. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. The Plant Cell 22:3066−75

doi: 10.1105/tpc.110.077974
[18]

Panikashvili D, Shi JX, Schreiber L, Aharoni A. 2011. The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytologist 190:113−24

doi: 10.1111/j.1469-8137.2010.03608.x
[19]

Chen N, Song B, Tang S, He J, Zhou Y, et al. 2018. Overexpression of the ABC transporter gene TsABCG11 increases cuticle lipids and abiotic stress tolerance in Arabidopsis. Plant Biotechnology Reports 12:303−13

doi: 10.1007/s11816-018-0495-6
[20]

Yeats TH, Martin LBB, Viart HMF, Isaacson T, He Y, et al. 2012. The identification of cutin synthase: formation of the plant polyester cutin. Nature Chemical Biology 8:609−11

doi: 10.1038/nchembio.960
[21]

Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, et al. 2012. Tomato GDSL1 is required for cutin deposition in the fruit cuticle. The Plant Cell 24:3119−34

doi: 10.1105/tpc.112.101055
[22]

Lashbrooke J, Adato A, Lotan O, Alkan N, Tsimbalist T, et al. 2015. The tomato MIXTA-like transcription factor coordinates fruit epidermis conical cell development and cuticular lipid biosynthesis and assembly. Plant Physiology 169:2553−71

doi: 10.1104/pp.15.01145
[23]

Castro-Enríquez DD, Montaño-Leyva B, Del Toro-Sánchez CL, Juárez-Onofre JE, Carvajal-Millán E, et al. 2020. Effect of ultrafiltration of Pitaya extract (Stenocereus thurberi) on its phytochemical content, antioxidant capacity, and UPLC-DAD-MS profile. Molecules 25:281

doi: 10.3390/molecules25020281
[24]

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8:1494−512

doi: 10.1038/nprot.2013.084
[25]

Patra GK, Gupta D, Rout GR, Panda SK. 2023. Role of long non coding RNA in plants under abiotic and biotic stresses. Plant Physiology and Biochemistry 194:96−110

doi: 10.1016/j.plaphy.2022.10.030
[26]

Zhu B, Yang Y, Li R, Fu D, Wen L, et al. 2015. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. Journal of Experimental Botany 66:4483−95

doi: 10.1093/jxb/erv203
[27]

Ou L, Liu Z, Zhang Z, Wei G, Zhang Y, et al. 2017. Noncoding and coding transcriptome analysis reveals the regulation roles of long noncoding RNAs in fruit development of hot pepper (Capsicum annuum L.). Plant Growth Regulation 83:141−56

doi: 10.1007/s10725-017-0290-3
[28]

Tian Y, Bai S, Dang Z, Hao J, Zhang J, Hasi A, et al. 2019. Genome-wide identification and characterization of long non-coding RNAs involved in fruit ripening and the climacteric in Cucumis melo. BMC Plant Biology 19:369

doi: 10.1186/s12870-019-1942-4
[29]

Zhou H, Ren F, Wang X, Qiu K, Sheng Y, et al. 2022. Genome-wide identification and characterization of long noncoding RNAs during peach (Prunus persica) fruit development and ripening. Scientific Reports 12:11044

doi: 10.1038/s41598-022-15330-3
[30]

Wan CY, Wilkins TA. 1994. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical Biochemistry 223:7−12

doi: 10.1006/abio.1994.1538
[31]

Bairoch A, Apweiler R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research 28:45−48

doi: 10.1093/nar/28.1.45
[32]

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 40:D1202−D1210

doi: 10.1093/nar/gkr1090
[33]

O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research 44:D733−D745

doi: 10.1093/nar/gkv1189
[34]

Jin J, Tian F, Yang DC, Meng YQ, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040–D1045

doi: 10.1093/nar/gkw982
[35]

Conesa A, Götz S. 2008. Blast2GO: a comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics 2008:619832

doi: 10.1155/2008/619832
[36]

Wang Y, Zhao Y, Wu Y, Zhao X, Hao Z, et al. 2022. Transcriptional profiling of long non-coding RNAs regulating fruit cracking in Punica granatum L. under bagging. Frontiers in Plant Science 13:943547

doi: 10.3389/fpls.2022.943547
[37]

Kalvari I, Nawrocki EP, Argasinska J, Quinones-Olvera N, Finn RD, et al. 2018. Non-coding RNA analysis using the Rfam database. Current Protocols in Bioinformatics 62:e51

doi: 10.1002/cpbi.51
[38]

Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, et al. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research 35:W345−W349

doi: 10.1093/nar/gkm391
[39]

Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, et al. 2017. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research 45:W12−W16

doi: 10.1093/nar/gkx428
[40]

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40

doi: 10.1093/bioinformatics/btp616
[41]

Chen C, Wu J, Hua Q, Tel-Zur N, Xie F, et al. 2019. Identification of reliable reference genes for quantitative real-time PCR normalization in pitaya. Plant Methods 15:70

doi: 10.1186/s13007-019-0455-3
[42]

Nong Q, Yang Y, Zhang M, Zhang M, Chen J, et al. 2019. RNA-seq-based selection of reference genes for RT-qPCR analysis of pitaya. FEBS Open Bio 9:1403−12

doi: 10.1002/2211-5463.12678
[43]

Zheng Q, Wang X, Qi Y, Ma Y. 2021. Selection and validation of reference genes for qRT-PCR analysis during fruit ripening of red pitaya (Hylocereus polyrhizus). FEBS Open Bio 11:3142−52

doi: 10.1002/2211-5463.13053
[44]

González-Agüero M, García-Rojas M, Di Genova A, Correa J, Maass A, et al. 2013. Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data. BMC Genomics 14:878

doi: 10.1186/1471-2164-14-878
[45]

Thornton B, Basu C. 2015. Rapid and simple method of qPCR primer design. In PCR Primer Design, ed. Basu C. New York, NY: Humana Press. pp. 173–79. doi:10.1007/978-1-4939-2365-6_13

[46]

Xie F, Wang J, Zhang B. 2023. RefFinder: a web-based tool for comprehensively analyzing and identifying reference genes. Functional & Integrative Genomics 23:125

doi: 10.1007/s10142-023-01055-7
[47]

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3:research0034.1

doi: 10.1186/gb-2002-3-7-research0034
[48]

Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

doi: 10.1186/1471-2105-5-113
[49]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[50]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[51]

Silver N, Best S, Jiang J, Thein SL. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology 7:33

doi: 10.1186/1471-2199-7-33
[52]

Raghavan V, Kraft L, Mesny F, Rigerte L. 2022. A simple guide to de novo transcriptome assembly and annotation. Briefings in Bioinformatics 23:bbab563

doi: 10.1093/bib/bbab563
[53]

Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, et al. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679−85

doi: 10.1038/s41586-019-1693-2
[54]

Xi X, Zong Y, Li S, Cao D, Sun X, et al. 2019. Transcriptome analysis clarified genes involved in betalain biosynthesis in the fruit of red pitayas (Hylocereus costaricensis). Molecules 24:445

doi: 10.3390/molecules24030445
[55]

Erpen L, Devi HS, Grosser JW, Dutt M. 2018. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell, Tissue and Organ Culture (PCTOC) 132:1−25

doi: 10.1007/s11240-017-1320-6
[56]

Hu Y, Chen X, Shen X. 2022. Regulatory network established by transcription factors transmits drought stress signals in plant. Stress Biology 2:26

doi: 10.1007/s44154-022-00048-z
[57]

Jiang B, Liu R, Fang X, Tong C, Chen H, et al. 2022. Effects of salicylic acid treatment on fruit quality and wax composition of blueberry (Vaccinium virgatum Ait). Food Chemistry 368:130757

doi: 10.1016/j.foodchem.2021.130757
[58]

Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771

doi: 10.3390/genes10100771
[59]

Zhang JY, Broeckling CD, Sumner LW, Wang ZY. 2007. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Molecular Biology 64:265−78

doi: 10.1007/s11103-007-9150-2
[60]

Liu W, Cheng C, Lin Y, XuHan X, Lai Z. 2018. Genome-wide identification and characterization of mRNAs and lncRNAs involved in cold stress in the wild banana (Musa itinerans). PLoS One 13:e0200002

doi: 10.1371/journal.pone.0200002
[61]

Zhu X, Tai X, Ren Y, Chen J, Bo T. 2019. Genome-wide analysis of coding and long non-coding RNAs involved in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata). International Journal of Molecular Sciences 20:2820

doi: 10.3390/ijms20112820
[62]

Corona-Gomez JA, Coss-Navarrete EL, Garcia-Lopez IJ, Klapproth C, Pérez-Patiño JA, et al. 2022. Transcriptome-guided annotation and functional classification of long non-coding RNAs in Arabidopsis thaliana. Scientific Reports 12:14063

doi: 10.1038/s41598-022-18254-0
[63]

Lim PK, Zheng X, Goh JC, Mutwil M. 2022. Exploiting plant transcriptomic databases: resources, tools, and approaches. Plant Communications 3:100323

doi: 10.1016/j.xplc.2022.100323
[64]

Wang Y, Dai M, Cai D, Shi Z. 2019. Screening for quantitative real-time PCR reference genes with high stable expression using the mRNA-sequencing data for pear. Tree Genetics & Genomes 15:54

doi: 10.1007/s11295-019-1361-6
[65]

He F, Gui L, Zhang Y, Zhu B, Zhang X, et al. 2022. Validation of reference genes for gene expression analysis in fruit development of Vaccinium bracteatum Thunb. using quantitative real-time PCR. Scientific Reports 12:16946

doi: 10.1038/s41598-022-20864-7
[66]

Liu J, Huang S, Niu X, Chen D, Chen Q, et al. 2018. Genome-wide identification and validation of new reference genes for transcript normalization in developmental and post-harvested fruits of Actinidia chinensis. Gene 645:1−6

doi: 10.1016/j.gene.2017.12.012
[67]

Kou X, Zhang L, Yang S, Li G, Ye J. 2017. Selection and validation of reference genes for quantitative RT-PCR analysis in peach fruit under different experimental conditions. Scientia Horticulturae 225:195−203

doi: 10.1016/j.scienta.2017.07.004
[68]

Zhu L, Yang C, You Y, Liang W, Wang N, et al. 2019. Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus domestica) at diverse stages of fruit development. Scientia Horticulturae 244:165−71

doi: 10.1016/j.scienta.2018.09.033
[69]

Berumen-Varela G, Palomino-Hermosillo YA, Bautista-Rosales PU, Peña-Sandoval GR, López-Gúzman GG, et al. 2020. Identification of reference genes for quantitative real-time PCR in different developmental stages and under refrigeration conditions in soursop fruits (Annona muricata L.). Scientia Horticulturae 260:108893

doi: 10.1016/j.scienta.2019.108893
[70]

Cheng Y, Pang X, Wan H, Ahammed GJ, Yu J, et al. 2017. Identification of optimal reference genes for normalization of qPCR analysis during pepper fruit development. Frontiers in Plant Science 8:1128

doi: 10.3389/fpls.2017.01128
[71]

McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, et al. 2004. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. The Plant Journal 37:156−73

doi: 10.1111/j.1365-313X.2004.01949.x
[72]

Pineau E, Sauveplane V, Grienenberger E, Bassard JE, Beisson F, et al. 2021. CYP77B1 a fatty acid epoxygenase specific to flowering plants. Plant Science 307:110905

doi: 10.1016/j.plantsci.2021.110905
[73]

Ding LN, Guo XJ, Li M, Fu ZL, Yan SZ, et al. 2019. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Plant Cell Reports 38:243−53

doi: 10.1007/s00299-018-2365-7
[74]

Yeats TH, Howe KJ, Matas AJ, Buda GJ, Thannhauser TW, et al. 2010. Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis. Journal of Experimental Botany 61:3759−71

doi: 10.1093/jxb/erq194
[75]

Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, et al. 2007. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology 145:1345−60

doi: 10.1104/pp.107.105676
[76]

Alkio M, Jonas U, Sprink T, van Nocker S, Knoche M. 2012. Identification of putative candidate genes involved in cuticle formation in Prunus avium (sweet cherry) fruit. Annals of Botany 110:101−12

doi: 10.1093/aob/mcs087