[1] |
Lin Z, Zhang C, Cao D, Damaris RN, Yang P. 2019. The latest studies on lotus (Nelumbo nucifera)-an emerging horticultural model plant. International Journal of Molecular Sciences 20:3680 doi: 10.3390/ijms20153680 |
[2] |
Cao D, Damaris RN, Zhang Y, Liu M, Li M, et al. 2019. Proteomic analysis showing the signaling pathways involved in the rhizome enlargement process in Nelumbo nucifera. BMC Genomics 20:766 doi: 10.1186/s12864-019-6151-x |
[3] |
Cheng L, Li S, Yin J, Li L, Chen X. 2013. Genome-wide analysis of differentially expressed genes relevant to rhizome formation in lotus root (Nelumbo nucifera Gaertn). PLoS ONE 8:e67116 doi: 10.1371/journal.pone.0067116 |
[4] |
Yang M, Zhu L, Pan C, Xu L, Liu Y, et al. 2015. Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera). Scientific Reports 5:13059 doi: 10.1038/srep13059 |
[5] |
Liu Y, Song H, Zhang M, Yang D, Deng X, et al. 2022. Identification of QTLs and a putative candidate gene involved in rhizome enlargement of Asian lotus (Nelumbo nucifera). Plant Molecular Biology 110:23−36 doi: 10.1007/s11103-022-01281-w |
[6] |
Masuda JI, Ozaki Y, Okubo H. 2007. Rhizome transition to storage organ is under phytochrome control in lotus (Nelumbo nucifera). Planta 226:909−15 doi: 10.1007/s00425-007-0536-9 |
[7] |
Masuda J, Yoshimizu S, Ozaki Y, Okubo H. 2007. Rhythmic response of rhizome growth to light-break in lotus (Nelumbo nucifera). Journal of the Faculty of Agriculture, Kyushu University 52:35−38 doi: 10.5109/9277 |
[8] |
Masuda J, Ozaki Y, Miyajima I, Okubo H. 2010. Ethylene is not involved in rhizome transition to storage organ in lotus (Nelumbo nucifera). Journal of the Faculty of Agriculture, Kyushu University 55:231−32 doi: 10.5109/18834 |
[9] |
Masuda JI, Ozaki Y, Okubo H. 2012. Regulation in rhizome transition to storage organ in lotus (Nelumbo nucifera Gaertn.) with exogenous gibberellin, gibberellin biosynthesis inhibitors or abscisic acid. Journal of the Japanese Society for Horticultural Science 81:67−71 doi: 10.2503/jjshs1.81.67 |
[10] |
Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV. 1970. Brassins—a new family of plant hormones from rape pollen. Nature 225:1065−66 doi: 10.1038/2251065a0 |
[11] |
Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. The Plant Cell 32:295−318 doi: 10.1105/tpc.19.00335 |
[12] |
Ramraj VM, Vyas BN, Godrej NB, Mistry KB, Swami BN, et al. 1997. Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. The Journal of Agricultural Science 128:405−13 doi: 10.1017/S0021859697004322 |
[13] |
Guo C, Shen Y, Li M, Chen Y, Xu X, et al. 2022. Principal component analysis to assess the changes of yield and quality of two Pinellia ternata cultivars after Brassinolide treatments. Journal of Plant Growth Regulation 41:2185−97 doi: 10.1007/s00344-021-10434-y |
[14] |
Tang X, Qu Z, Zhang H, Wei Q, Zhang L, et al. 2018. Effect of physiology and yield by spraying EBR during potato tuber formation stage. Journal of Nuclear Agricultural Sciences 32:1855−63 doi: 10.11869/j.issn.100-8551.2018.09.1855 |
[15] |
Doležalová J, Koudela M, Sus J, Ptáček V. 2016. Effects of synthetic brassinolide on the yield of onion grown at two irrigation levels. Scientia Horticulturae 202:125−32 doi: 10.1016/j.scienta.2016.02.023 |
[16] |
Bajguz A, Piotrowska-Niczyporuk A. 2023. Biosynthetic pathways of hormones in plants. Metabolites 13:884 doi: 10.3390/metabo13080884 |
[17] |
Ghosh S. 2017. Triterpene structural diversification by plant cytochrome P450 enzymes. Frontiers in Plant Science 8:1886 doi: 10.3389/fpls.2017.01886 |
[18] |
Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, et al. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171−82 doi: 10.1016/S0092-8674(00)81094-6 |
[19] |
Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, et al. 1998. The dwf4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. The Plant Cell 10:231−43 doi: 10.1105/tpc.10.2.231 |
[20] |
Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, et al. 2005. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. The Plant Journal 41:710−72 doi: 10.1111/j.1365-313X.2004.02330.x |
[21] |
Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, et al. 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology 24:105−09 doi: 10.1038/nbt1173 |
[22] |
Bishop GJ, Harrison K, Jones JD. 1996. The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. The Plant Cell 8:959−69 doi: 10.1105/tpc.8.6.959 |
[23] |
Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, et al. 2000. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology 122:85−98 doi: 10.1104/pp.122.1.85 |
[24] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative Toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[25] |
Chou KC, Shen HB. 2008. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols 3:153−62 doi: 10.1038/nprot.2007.494 |
[26] |
Shi T, Rahmani RS, Gugger PF, Wang M, Li H, et al. 2020. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants. Molecular Biology and Evolution 37:2394−413 doi: 10.1093/molbev/msaa105 |
[27] |
Li J, Xiong Y, Li Y, Ye S, Yin Q, et al. 2019. Comprehensive analysis and functional studies of WRKY transcription factors in Nelumbo nucifera. International Journal of Molecular Sciences 20:5006 doi: 10.3390/ijms20205006 |
[28] |
Sun H, Song H, Deng X, Liu J, Yang D, et al. 2022. Transcriptome-wide characterization of alkaloids and chlorophyll biosynthesis in lotus plumule. Frontiers in Plant Science 13:885503 doi: 10.3389/fpls.2022.885503 |
[29] |
Zhou T, Song B, Liu T, Shen Y, Dong L, et al. 2019. Phytochrome F plays critical roles in potato photoperiodic tuberization. The Plant Journal 98:42−54 doi: 10.1111/tpj.14198 |
[30] |
Navarro C, Abelenda JA, Cruz-Oró E, Cuellar CA, Tamaki S, et al. 2011. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119−22 doi: 10.1038/nature10431 |
[31] |
Zhan H, Lu M, Luo Q, Tan F, Zhao Z, et al. 2022. OsCPD1 and OsCPD2 are functional brassinosteroid biosynthesis genes in rice. Plant Science 325:111482 doi: 10.1016/j.plantsci.2022.111482 |
[32] |
Wang M, Xu X, Zhang X, Sun S, Wu C, et al. 2015. Functional analysis of GmCPDs and investigation of their roles in flowering. PLoS ONE 10:e0118476 doi: 10.1371/journal.pone.0118476 |
[33] |
Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, et al. 2006. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. The Plant Journal 45:765−74 doi: 10.1111/j.1365-313X.2005.02639.x |
[34] |
Marand AP, Eveland AL, Kaufmann K, Springer NM. 2023. cis-regulatory elements in plant development, adaptation, and evolution. Annual Review of Plant Biology 74:111−37 doi: 10.1146/annurev-arplant-070122-030236 |
[35] |
Sun Y, Fan X, Cao D, Tang W, He K, et al. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19:765−77 doi: 10.1016/j.devcel.2010.10.010 |
[36] |
Nelson DR, Schuler MA. 2013. Cytochrome P450 genes from the sacred lotus genome. Tropical Plant Biology 6:138−51 doi: 10.1007/s12042-013-9119-z |
[37] |
Ohnishi T, Szatmari AM, Watanabe B, Fujita S, Bancos S, et al. 2006. C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. The Plant Cell 18:3275−88 doi: 10.1105/tpc.106.045443 |
[38] |
Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, et al. 2018. Membrane-attached mammalian cytochromes P450: an overview of the membrane's effects on structure, drug binding, and interactions with redox partners. Journal of Inorganic Biochemistry 183:117−36 doi: 10.1016/j.jinorgbio.2018.03.002 |
[39] |
Syed K, Mashele SS. 2014. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family. PLoS ONE 9:e95616 doi: 10.1371/journal.pone.0095616 |
[40] |
Sheng J, Li X, Zhang D. 2022. Gibberellins, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Horticultural Plant Journal 8:243−50 doi: 10.1016/j.hpj.2021.06.002 |
[41] |
Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, et al. 2003. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology 131:287−97 doi: 10.1104/pp.013029 |
[42] |
Saidi A, Hajibarat Z. 2021. Phytohormones: plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology 19:89 doi: 10.1186/s43141-021-00192-5 |
[43] |
Teo CJ, Takahashi K, Shimizu K, Shimamoto K, Taoka KI. 2017. Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant and Cell Physiology 58:365−74 doi: 10.1093/pcp/pcw197 |