[1] |
Organization for Economic Co-operation and Development/Food and Agriculture Organization of the United Nations (OECD/FAO). 2023. OECD-FAO Agricultural Outlook 2023-2032. Paris: OECD Publishing. doi: 10.1787/08801ab7-en |
[2] |
Xie Y, Cai L, Zhou G, Li C. 2024. Global research landscape and trends of plant-based meat analogues: a bibliometric analysis. Food Materials Research 4:e020 doi: 10.48130/fmr-0024-0011 |
[3] |
Kaur L, Mao B, Beniwal AS, Abhilasha, Kaur R, et al. 2022. Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends in Food Science & Technology 122:275−86 doi: 10.1016/j.jpgs.2022.02.021 |
[4] |
Yin Z, Liu F, Gu X, Zhang L, Ma Y, et al. 2022. A comparison of hepatic lipid metabolism and fatty acid composition in muscle between Duroc × Landrace × Yorkshire and Tibetan pigs from three regions. Food Materials Research 2:7 doi: 10.48130/fmr-2022-0007 |
[5] |
Xie Y, Ma Y, Cai L, Jiang S, Li C. 2022. Reconsidering meat intake and human health: a review of current research. Molecular Nutrition & Food Research 66:2101066 doi: 10.1002/mnfr.202101066 |
[6] |
Su G, Yu C, Liang S, Wang W, Wang H. 2024. Multi-omics in food safety and authenticity in terms of food components. Food Chemistry 437:137943 doi: 10.1016/j.foodchem.2023.137943 |
[7] |
Esteki M, Shahsavari Z, Simal-Gandara J. 2019. Food identification by high performance liquid chromatography fingerprinting and mathematical processing. Food Research International 122:303−17 doi: 10.1016/j.foodres.2019.04.025 |
[8] |
Masiá A, Suarez-Varela MM, Llopis-Gonzalez A, Picó Y. 2016. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: a review. Analytica Chimica Acta 936:40−61 doi: 10.1016/j.aca.2016.07.023 |
[9] |
Yang Y, Lu X, Yang F, Jia Z, Xie X, et al. 2023. Analysis of dipeptides in Chinese liquors based on dansylation combined with liquid chromatography-mass spectrometry. Food Chemistry-X 20:100933 doi: 10.1016/j.fochx.2023.100933 |
[10] |
Okada A, Tsuchida M, Aoyagi K, Yoshino A, Rahman M, et al. 2023. Detection of Campylobacter spp. in chicken meat using culture methods and quantitative PCR with propidium monoazide. Poultry Science 102:102883 doi: 10.1016/j.psj.2023.102883 |
[11] |
Lifshitz Z, Adler A, Carmeli Y. 2016. Comparative study of a novel biochemical assay, the Rapidec Carba NP test, for detecting carbapenemase-producing enterobacteriaceae. Journal of Clinical Microbiology 54:453−56 doi: 10.1128/JCM.02626-15 |
[12] |
Zhang C, Huang L, Pu H, Sun DW. 2021. Magnetic surface-enhanced Raman scattering (MagSERS) biosensors for microbial food safety: Fundamentals and applications. Trends in Food Science & Technology 113:366−81 doi: 10.1016/j.jpgs.2021.05.007 |
[13] |
Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. 2021. Ten years of lateral flow immunoassay technique applications: trends. Challenges and Future Perspectives. Sensors 21:5185 doi: 10.3390/s21155185 |
[14] |
Dong X, Qi S, Khan IM, Sun Y, Zhang Y, et al. 2023. Advances in riboswitch-based biosensor as food samples detection tool. Comprehensive Reviews in Food Science and Food Safety 22:451−72 doi: 10.1111/1541-4337.13077 |
[15] |
Zhang X, Zhu D, Yang X, Man C, Jiang Y, et al. 2024. Nanozyme-enabled microfluidic biosensors: A promising tool for on-site food safety analysis. Trends in Food Science & Technology 148:104486 doi: 10.1016/j.jpgs.2024.104486 |
[16] |
Meza Ramirez CA, Greenop M, Ashton L, Rehman IU. 2021. Applications of machine learning in spectroscopy. Applied Spectroscopy Reviews 56:733−63 doi: 10.1080/05704928.2020.1859525 |
[17] |
Pinto R, Vilarinho R, Carvalho AP, Moreira JA, Guimarães L, et al. 2021. Raman spectroscopy applied to diatoms (microalgae, Bacillariophyta): Prospective use in the environmental diagnosis of freshwater ecosystems. Water Research 198:117102 doi: 10.1016/j.watres.2021.117102 |
[18] |
Zhang W, Ma J, Sun DW. 2021. Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications. Critical Reviews in Food Science and Nutrition 61:2623−39 doi: 10.1080/10408398.2020.1828814 |
[19] |
Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK. 2019. Raman techniques: fundamentals and frontiers. Nanoscale Research Letters 14:231 doi: 10.1186/s11671-019-3039-2 |
[20] |
Ma H, Pan SQ, Wang WL, Yue X, Xi XH, et al. 2024. Surface-enhanced Raman spectroscopy: current understanding, challenges, and opportunities. ACS Nano 18:14000−19 doi: 10.1021/acsnano.4c02670 |
[21] |
Gu Y, Li Y, Qiu H, Yang Y, Wu Q, et al. 2023. Recent progress on noble-free substrates for surface-enhanced Raman spectroscopy analysis. Coordination Chemistry Reviews 497:215425 doi: 10.1016/j.ccr.2023.215425 |
[22] |
Nilghaz A, Mahdi Mousavi S, Amiri A, Tian J, Cao R, et al. 2022. Surface-enhanced Raman spectroscopy substrates for food safety and quality analysis. Journal of Agricultural and Food Chemistry 70:5463−76 doi: 10.1021/acs.jafc.2c00089 |
[23] |
Hua Z, Yu T, Liu D, Xianyu Y. 2021. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosensors & Bioelectronics 179:113076 doi: 10.1016/j.bios.2021.113076 |
[24] |
Kutsanedzie FYH, Agyekum AA, Annavaram V, Chen Q. 2020. Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for ochratoxin A and aflatoxin B1 detection. Food Chemistry 315:126231 doi: 10.1016/j.foodchem.2020.126231 |
[25] |
Hussain N, Pu H, Sun DW. 2021. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Food Chemistry 350:129025 doi: 10.1016/j.foodchem.2021.129025 |
[26] |
Ge K, Hu Y, Li G. 2022. Recent Progress on Solid substrates for surface-enhanced Raman spectroscopy analysis. Biosensors 12:941 doi: 10.3390/bios12110941 |
[27] |
Xie T, Cao Z, Li Y, Li Z, Zhang FL, et al. 2022. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Food Chemistry 381:132208 doi: 10.1016/j.foodchem.2022.132208 |
[28] |
Scarabelli L, Coronado-Puchau M, Giner-Casares JJ, Langer J, Liz-Marzán LM. 2014. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8:5833−42 doi: 10.1021/nn500727w |
[29] |
Bell SEJ, Charron G, Cortés E, Kneipp J, de la Chapelle ML, et al. 2020. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice. Angewandte Chemie 59:5454−62 doi: 10.1002/anie.201908154 |
[30] |
Chong NS, Donthula K, Davies RA, Ilsley WH, Ooi BG. 2015. Significance of chemical enhancement effects in surface-enhanced Raman scattering (SERS) signals of aniline and aminobiphenyl isomers. Vibrational Spectroscopy 81:22−31 doi: 10.1016/j.vibspec.2015.09.002 |
[31] |
Jiang L, Hassan MM, Ali S, Li H, Sheng R, et al. 2021. Evolving trends in SERS-based techniques for food quality and safety: a review. Trends in Food Science & Technology 112:225−40 doi: 10.1016/j.jpgs.2021.04.006 |
[32] |
Song D, Yang R, Long F, Zhu A. 2019. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. Journal of Environmental Sciences 80:14−34 doi: 10.1016/j.jes.2018.07.004 |
[33] |
Yin Z, Xu K, Jiang S, Luo D, Chen R, et al. 2021. Recent progress on two-dimensional layered materials for surface enhanced Raman spectroscopy and their applications. Materials Today Physics 18:100378 doi: 10.1016/j.mtphys.2021.100378 |
[34] |
Liu Y, Zhou H, Hu Z, Yu G, Yang D, et al. 2017. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosensors & Bioelectronics 94:131−40 doi: 10.1016/j.bios.2017.02.032 |
[35] |
Deng D, Yang H, Liu C, Zhao K, Li J, et al. 2019. Ultrasensitive detection of diclofenac in water samples by a novel surface-enhanced Raman scattering (SERS)-based immunochromatographic assay using AgMBA@SiO2-Ab as immunoprobe. Sensors and Actuators B-Chemical 283:563−70 doi: 10.1016/j.snb.2018.12.076 |
[36] |
Wu L, Yan H, Li G, Xu X, Zhu L, et al. 2019. Surface-imprinted gold nanoparticle-based surface-enhanced Raman scattering for sensitive and specific detection of patulin in food samples. Food Analytical Methods 12:1648−57 doi: 10.1007/s12161-019-01498-4 |
[37] |
Song C, Li J, Sun Y, Jiang X, Zhang J, et al. 2020. Colorimetric/SERS dual-mode detection of mercury ion via SERS-Active peroxidase-like Au@AgPt NPs. Sensors and Actuators B: Chemical 310:127849 doi: 10.1016/j.snb.2020.127849 |
[38] |
Han XX, Ozaki Y, Zhao B. 2012. Label-free detection in biological applications of surface-enhanced Raman scattering. Trac-Trends in Analytical Chemistry 38:67−78 doi: 10.1016/j.trac.2012.05.006 |
[39] |
Hickey ME, Gao S, He L. 2020. Comparison of label-free and label-based approaches for surface-enhanced Raman microscopic imaging of bacteria cells. Analytical Science Advances 1:245−53 doi: 10.1002/ansa.202000088 |
[40] |
Wang C, Wang C, Li J, Tu Z, Gu B, et al. 2022. Ultrasensitive and multiplex detection of four pathogenic bacteria on a bi-channel lateral flow immunoassay strip with three-dimensional membrane-like SERS nanostickers. Biosensors & Bioelectronics 214:114525 doi: 10.1016/j.bios.2022.114525 |
[41] |
He H, Sun DW, Pu H, Huang L. 2020. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chemistry 324:126832 doi: 10.1016/j.foodchem.2020.126832 |
[42] |
Zheng XS, Jahn IJ, Weber K, Cialla-May D, Popp J. 2018. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 197:56−77 doi: 10.1016/j.saa.2018.01.063 |
[43] |
Reymond-Laruinaz S, Saviot L, Potin V, Marco de Lucas MdC. 2016. Protein-nanoparticle interaction in bioconjugated silver nanoparticles: a transmission electron microscopy and surface enhanced Raman spectroscopy study. Applied Surface Science 389:17−24 doi: 10.1016/j.apsusc.2016.07.082 |
[44] |
Singhal K, Kalkan AK. 2010. Surface-enhanced Raman scattering captures conformational changes of single photoactive yellow protein molecules under photoexcitation. Journal of the American Chemical Society 132:429−31 doi: 10.1021/ja9028704 |
[45] |
Arabi M, Ostovan A, Zhang Z, Wang Y, Mei R, et al. 2021. Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosensors & Bioelectronics 174:112825 doi: 10.1016/j.bios.2020.112825 |
[46] |
Xu LJ, Lei ZC, Li J, Zong C, Yang CJ, et al. 2015. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. Journal of the American Chemical Society 137:5149−54 doi: 10.1021/jacs.5b01426 |
[47] |
Wang S, Dong H, Shen W, Yang Y, Li Z, et al. 2021. Rapid SERS identification of methicillin-susceptible and methicillin-resistant Staphylococcus aureus via aptamer recognition and deep learning. RSC Advances 11:34425−31 doi: 10.1039/D1RA05778B |
[48] |
Wang X, Zeng J, Sun Q, Yang J, Xiao Y, et al. 2021. An effective method towards label-free detection of antibiotics by surface-enhanced Raman spectroscopy in human serum. Sensors and Actuators B: Chemical 343:130084 doi: 10.1016/j.snb.2021.130084 |
[49] |
Zhang WS, Wang YN, Wang Y, Xu ZR. 2019. Highly reproducible and fast detection of 6-thioguanine in human serum using a droplet-based microfluidic SERS system. Sensors and Actuators B: Chemical 283:532−37 doi: 10.1016/j.snb.2018.12.077 |
[50] |
Fraire JC, Sueldo Ocello VN, Allende LG, Veglia AV, Coronado EA. 2015. Toward the design of highly stable small colloidal SERS substrates with supramolecular host–guest interactions for ultrasensitive detection. The Journal of Physical Chemistry C 119:8876−88 doi: 10.1021/acs.jpcc.5b01647 |
[51] |
Su X, Liu X, Xie Y, Chen M, Zhong H, et al. 2023. Quantitative label-free SERS detection of trace fentanyl in biofluids with a freestanding hydrophobic plasmonic paper biosensor. Analytical Chemistry 95:3821−29 doi: 10.1021/acs.analchem.2c05211 |
[52] |
Zhang R, Li L, Guo Y, Shi Y, Li JF, et al. 2023. Confined-Enhanced Raman Spectroscopy. Nano Letters 23:11771−77 doi: 10.1021/acs.nanolett.3c03734 |
[53] |
Xu J, Mishra P. 2022. Combining deep learning with chemometrics when it is really needed: A case of real time object detection and spectral model application for spectral image processing. Analytica Chimica Acta 1202:339668 doi: 10.1016/j.aca.2022.339668 |
[54] |
Cui F, Yue Y, Zhang Y, Zhang Z, Zhou HS. 2020. Advancing biosensors with machine learning. ACS Sensors 5:3346−64 doi: 10.1021/acssensors.0c01424 |
[55] |
Lussier F, Thibault V, Charron B, Wallace GQ, Masson JF. 2020. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends in Analytical Chemistry 124:115796 doi: 10.1016/j.trac.2019.115796 |
[56] |
Hu Q, Sellers C, Kwon JSI, Wu HJ. 2022. Integration of surface-enhanced Raman spectroscopy (SERS) and machine learning tools for coffee beverage classification. Digital Chemical Engineering 3:100020 doi: 10.1016/j.dche.2022.100020 |
[57] |
Diao X, Li X, Hou S, Li H, Qi G, et al. 2023. Machine learning-based label-free SERS profiling of exosomes for accurate fuzzy diagnosis of cancer and dynamic monitoring of drug therapeutic processes. Analytical Chemistry 95:7552−59 doi: 10.1021/acs.analchem.3c00026 |
[58] |
Zong C, Xu M, Xu LJ, Wei T, Ma X, et al. 2018. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews 118:4946−80 doi: 10.1021/acs.chemrev.7b00668 |
[59] |
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, et al. 2022. Development of SERS tags for human diseases screening and detection. Coordination Chemistry Reviews 470:214711 doi: 10.1016/j.ccr.2022.214711 |
[60] |
Jiang C, Wang Y, Song W, Lu L. 2019. Delineating the tumor margin with intraoperative surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry 411:3993−4006 doi: 10.1007/s00216-019-01577-9 |
[61] |
Liu H, Gao X, Xu C, Liu D. 2022. SERS Tags for Biomedical Detection and Bioimaging. Theranostics 12:1870−903 doi: 10.7150/thno.66859 |
[62] |
Wang Y, Schlücker S. 2013. Rational design and synthesis of SERS labels. Analyst 138:2224−38 doi: 10.1039/c3an36866a |
[63] |
Lin J, Shang Y, Li X, Yu J, Wang X, et al. 2017. Ultrasensitive SERS Detection by Defect Engineering on Single Cu2O Superstructure Particle. Advanced Materials 29:1604797 doi: 10.1002/adma.201604797 |
[64] |
Wang Y, Liu S, Hu Y, Fu C, Chen W. 2023. Ultrasensitive detection of thiram based on surface-enhanced Raman scattering via Au@Ag@Ag core/shell/shell bimetallic nanorods. Analyst 148:5435−44 doi: 10.1039/D3AN00821E |
[65] |
Pham XH, Seong B, Hahm E, Huynh KH, Kim YH, et al. 2021. Glucose detection of 4-mercaptophenylboronic acid-immobilized gold-silver core-shell assembled silica nanostructure by surface enhanced Raman scattering. Nanomaterials 11:948 doi: 10.3390/nano11040948 |
[66] |
Ando J, Asanuma M, Dodo K, Yamakoshi H, Kawata S, et al. 2016. Alkyne-Tag SERS Screening and Identification of Small-Molecule-Binding Sites in Protein. Journal of the American Chemical Society 138:13901−10 doi: 10.1021/jacs.6b06003 |
[67] |
Zhou T, Lu D, She Q, Chen C, Chen J, et al. 2021. Hypersensitive detection of IL-6 on SERS substrate calibrated by dual model. Sensors and Actuators B: Chemical 336:129597 doi: 10.1016/j.snb.2021.129597 |
[68] |
Wang H, Pu G, Devaramani S, Wang Y, Yang Z, et al. 2018. Bimodal electrochemiluminescence of G-CNQDs in the presence of double coreactants for ascorbic acid detection. Analytical Chemistry 90:4871−77 doi: 10.1021/acs.analchem.8b00517 |
[69] |
Tan H-S, Wang T, Han J-M, Liu M, Li S-S. 2024. Dual-signal SERS biosensor based on spindle-shaped gold array for sensitive and accurate detection of miRNA 21. Sensors and Actuators B: Chemical 403:135157 doi: 10.1016/j.snb.2023.135157 |
[70] |
Liu H, Dai E, Xiao R, Zhou Z, Zhang M, et al. 2021. Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sensors and Actuators B-Chemical 329:129196 doi: 10.1016/j.snb.2020.129196 |
[71] |
Jiang S, Li Q, Wang C, Pang Y, Sun Z, Xiao R. 2021. In situ exosomal microRNA determination by target-triggered SERS and Fe3O4@TiO2-based exosome accumulation. ACS Sensors 6:852−62 doi: 10.1021/acssensors.0c01900 |
[72] |
Zhu T, Hu Y, Yang K, Dong N, Yu M, et al. 2018. A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Microchimica Acta 185:30 doi: 10.1007/s00604-017-2573-9 |
[73] |
Peng R, Qi W, Deng T, Si Y, Li J. 2024. Development of surface-enhanced Raman scattering-sensing Method by combining novel Ag@Au core/shell nanoparticle-based SERS probe with hybridization chain reaction for high-sensitive detection of hepatitis C virus nucleic acid. Analytical and Bioanalytical Chemistry 416:2515−25 doi: 10.1007/s00216-024-05219-7 |
[74] |
Lenzi E, Jimenez de Aberasturi D, Liz-Marzán LM. 2019. Surface-enhanced Raman scattering tags for three-dimensional bioimaging and biomarker detection. ACS Sensors 4:1126−37 doi: 10.1021/acssensors.9b00321 |
[75] |
Rodal-Cedeira S, Vázquez-Arias A, Bodelón G, Skorikov A, Núñez-Sánchez S, et al. 2020. An expanded surface-enhanced Raman scattering tags library by combinatorial encapsulation of reporter molecules in metal nanoshells. ACS Nano 14:14655−64 doi: 10.1021/acsnano.0c04368 |
[76] |
WHO. 2022. Food safety. www.who.int/news-room/fact-sheets/detail/food-safety |
[77] |
Xue J, Zhang W. 2013. Understanding China's food safety problem: An analysis of 2387 incidents of acute foodborne illness. Food Control 30:311−17 doi: 10.1016/j.foodcont.2012.07.024 |
[78] |
Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. 2022. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Critical Reviews in Food Science and Nutrition 62:1105−18 doi: 10.1080/10408398.2020.1835818 |
[79] |
Warmate D, Onarinde BA. 2023. Food safety incidents in the red meat industry: A review of foodborne disease outbreaks linked to the consumption of red meat and its products, 1991 to 2021. International Journal of Food Microbiology 398:110240 doi: 10.1016/j.ijfoodmicro.2023.110240 |
[80] |
Cao C, Wang M, Zhang D, Yu S, Xie H, et al. 2023. Portable ATP bioluminescence sensor with high specificity for live Escherichia coli O157: H7 strain synergistically enhanced by orientated phage-modified stir bar extraction and bio-proliferation. Biosensors & Bioelectronics 220:114852 doi: 10.1016/j.bios.2022.114852 |
[81] |
Shan S, Liu D, Guo Q, Wu S, Chen R, et al. 2016. Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA. Journal of Dairy Science 99:7025−32 doi: 10.3168/jds.2016-11320 |
[82] |
Dhital R, Bosilevac JM, Schmidt JW, Mustapha A. 2024. Multiplex high resolution melt curve real-time PCR for detection of Shiga-toxin producing and blaCTX-M-harboring E. coli in beef products. Food Control 157:110173 doi: 10.1016/j.foodcont.2023.110173 |
[83] |
Nassarawa SS, Luo Z, Lu Y. 2022. Conventional and emerging techniques for detection of foodborne pathogens in horticulture crops: a leap to food safety. Food and Bioprocess Technology 15:1248−67 doi: 10.1007/s11947-021-02730-y |
[84] |
Yang Y, Zeng C, Huang J, Wang M, Qi W, et al. 2022. Specific and quantitative detection of bacteria based on surface cell imprinted SERS mapping platform. Biosensors & Bioelectronics 215:114524 doi: 10.1016/j.bios.2022.114524 |
[85] |
Cho IH, Bhandari P, Patel P, Irudayaraj J. 2015. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E-coli O157:H7 in ground beef. Biosensors & Bioelectronics 64:171−76 doi: 10.1016/j.bios.2014.08.063 |
[86] |
Wang J, Chen Q, Belwal T, Lin X, Luo Z. 2021. Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Comprehensive Reviews in Food Science and Food Safety 20:2476−507 doi: 10.1111/1541-4337.12741 |
[87] |
Wu X, Xu C, Tripp RA, Huang YW, Zhao Y. 2013. Detection and differentiation of foodborne pathogenic bacteria in mung bean sprouts using field deployable label-free SERS devices. Analyst 138:3005−12 doi: 10.1039/c3an00186e |
[88] |
Leong SX, Tan EX, Han X, Luhung I, Aung NW, et al. 2023. Surface-enhanced Raman scattering-based surface chemotaxonomy: combining bacteria extracellular matrices and machine learning for rapid and universal species identification. ACS Nano 17:23132−43 doi: 10.1021/acsnano.3c09101 |
[89] |
Eady M, Setia G, Park B, Wang B, Sundaram J. 2023. Biopolymer encapsulated silver nitrate nanoparticle substrates with surface-enhanced Raman spectroscopy (SERS) for Salmonella detection from chicken rinse. International Journal of Food Microbiology 391−393:110158 doi: 10.1016/j.ijfoodmicro.2023.110158 |
[90] |
Zheng S, Xiao J, Zhang J, Sun Q, Liu D, et al. 2024. Python-assisted detection and photothermal inactivation of Salmonella typhimurium and Staphylococcus aureus on a background-free SERS chip. Biosensors & Bioelectronics 247:115913 doi: 10.1016/j.bios.2023.115913 |
[91] |
Gallo M, Ferrara L, Calogero A, Montesano D, Naviglio D. 2020. Relationships between food and diseases: What to know to ensure food safety. Food Research International 137:109414 doi: 10.1016/j.foodres.2020.109414 |
[92] |
Han S, Hyun SW, Son JW, Song MS, Lim DJ, et al. 2023. Innovative nonthermal technologies for inactivation of emerging foodborne viruses. Comprehensive Reviews in Food Science and Food Safety 22:3395−421 doi: 10.1111/1541-4337.13192 |
[93] |
Aladhadh M. 2023. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms 11:1111 doi: 10.3390/microorganisms11051111 |
[94] |
Fiers J, Tignon M, Cay AB, Simons X, Maes D. 2022. Porcine reproductive and respiratory syndrome virus (PRRSv): a cross-sectional study on ELISA seronegative, multivaccinated sows. Viruses 14:1944 doi: 10.3390/v14091944 |
[95] |
Wang Z, Wei P. 2024. Shifting the paradigm in RNA virus detection: integrating nucleic acid testing and immunoassays through single-molecule digital ELISA. Frontiers in Immunology 14:1331981 doi: 10.3389/fimmu.2023.1331981 |
[96] |
Fu X, Wang Q, Ma B, Zhang B, Sun K, et al. 2023. Advances in Detection Techniques for the H5N1 Avian Influenza Virus. International Journal of Molecular Sciences 24:17157 doi: 10.3390/ijms242417157 |
[97] |
Wang X, Li S, Qu H, Hao L, Shao T, et al. 2023. SERS-based immunomagnetic bead for rapid detection of H5N1 influenza virus. Influenza and Other Respiratory Viruses 17:e13114 doi: 10.1111/irv.13114 |
[98] |
Sun Y, Xu L, Zhang F, Song Z, Hu Y, et al. 2017. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosensors & Bioelectronics 89:906−12 doi: 10.1016/j.bios.2016.09.100 |
[99] |
Wang C, Wang C, Wang X, Wang K, Zhu Y, et al. 2019. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses. ACS Applied Materials & Interfaces 11:19495−505 doi: 10.1021/acsami.9b03920 |
[100] |
van Asselt ED, Jager J, Jansen LJM, Hoek-van den Hil EF, Barbu I, et al. 2023. Prioritizing veterinary drug residues in animal products for risk-based monitoring. Food Control 151:109782 doi: 10.1016/j.foodcont.2023.109782 |
[101] |
Al Tamim A, Alzahrani S, Al-Subaie S, Almutairi MA, Al Jaber A, et al. 2022. Fast simultaneous determination of 23 veterinary drug residues in fish, poultry, and red meat by liquid chromatography/tandem mass spectrometry. Arabian Journal of Chemistry 15:104116 doi: 10.1016/j.arabjc.2022.104116 |
[102] |
Lin S, Zhao Z, Lv YK, Shen S, Liang SX. 2021. Recent advances in porous organic frameworks for sample pretreatment of pesticide and veterinary drug residues: a review. Analyst 146:7394−417 doi: 10.1039/D1AN00988E |
[103] |
Chen Y, Cao J, Zhang J, Qi Z, Yan H. 2024. Functionalized nanofibers mat prepared through thiol-ene "click" reaction as solid phase extraction adsorbent for simultaneous detection of florfenicol and paracetamol residues in milk. Food Chemistry 437:137830 doi: 10.1016/j.foodchem.2023.137830 |
[104] |
Khaled A, Gionfriddo E, Acquaro V Jr, Singh V, Pawliszyn J. 2019. Development and validation of a fully automated solid phase microextraction high throughput method for quantitative analysis of multiresidue veterinary drugs in chicken tissue. Analytica Chimica Acta 1056:34−46 doi: 10.1016/j.aca.2018.12.044 |
[105] |
Peng Y, Liu M, Zhao J, Yuan H, Li Y, et al. 2016. Determination of benzylpenicillin potassium residues in duck meat using surface enhanced Raman spectroscopy with Au nanoparticles. Journal of Spectroscopy 2016:7086723 doi: 10.1155/2016/7086723 |
[106] |
Zhao J, Liu P, Yuan H, Peng Y, Hong Q, et al. 2016. Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy. Journal of Spectroscopy 2016:1845237 doi: 10.1155/2016/1845237 |
[107] |
Zhao R, Bi S, Shao D, Sun X, Li X. 2020. Rapid determination of marbofloxacin by surface-enhanced Raman spectroscopy of silver nanoparticles modified by β-cyclodextrin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 229:118009 doi: 10.1016/j.saa.2019.118009 |
[108] |
Shi S, Yu H, Yang F, Yao W, Xie Y. 2022. Simultaneous determination of 14 nitroimidazoles using thin-layer chromatography combined with surface-enhanced Raman spectroscopy (TLC-SERS). Food Bioscience 48:101755 doi: 10.1016/j.fbio.2022.101755 |
[109] |
Tu J, Wu T, Yu Q, Li J, Zheng S, et al. 2023. Introduction of multilayered magnetic core-dual shell SERS tags into lateral flow immunoassay: A highly stable and sensitive method for the simultaneous detection of multiple veterinary drugs in complex samples. Journal of Hazardous Materials 448:130912 doi: 10.1016/j.jhazmat.2023.130912 |
[110] |
Wu L, Zhang C, Long Y, Chen Q, Zhang W, Liu G. 2022. Food additives: from functions to analytical methods. Critical Reviews in Food Science and Nutrition 62:8497−517 doi: 10.1080/10408398.2021.1929823 |
[111] |
Hu J, Chen R, Xu Z, Li M, Ma Y, et al. 2021. Research on enhanced detection of benzoic acid additives in liquid food based on terahertz metamaterial devices. Sensors 21:3238 doi: 10.3390/s21093238 |
[112] |
Kim G, Lee H, Baek I, Cho BK, Kim MS. 2022. Short-Wave Infrared Hyperspectral Imaging System for Nondestructive Evaluation of Powdered Food. Journal of Biosystems Engineering 47:223−32 doi: 10.1007/s42853-022-00141-1 |
[113] |
Logue C, Dowey LRC, Strain JJ, Verhagen H, McClean S, et al. 2017. Application of liquid chromatography–tandem mass spectrometry to determine urinary concentrations of five commonly used low-calorie sweeteners: a novel biomarker approach for assessing recent intakes? Journal of Agricultural and Food Chemistry 65:4516−25 doi: 10.1021/acs.jafc.7b00404 |
[114] |
Li L, Zhang M, Chen W. 2020. Gold nanoparticle-based colorimetric and electrochemical sensors for the detection of illegal food additives. Journal of Food and Drug Analysis 28:641−53 doi: 10.38212/2224-6614.3114 |
[115] |
Martins FCOL, Sentanin MA, De Souza D. 2019. Analytical methods in food additives determination: Compounds with functional applications. Food Chemistry 272:732−50 doi: 10.1016/j.foodchem.2018.08.060 |
[116] |
Dies H, Siampani M, Escobedo C, Docoslis A. 2018. Direct detection of toxic contaminants in minimally processed food products using dendritic surface-enhanced Raman scattering substrates. Sensors 18:2726 doi: 10.3390/s18082726 |
[117] |
Zhang Y, Zhang Y, Jia J, Peng H, Qian Q, et al. 2023. Nitrite and nitrate in meat processing: Functions and alternatives. Current Research in Food Science 6:100470 doi: 10.1016/j.crfs.2023.100470 |
[118] |
Zhang H, Lai H, Li G, Hu Y. 2020. 4-Aminothiophenol capped halloysite nanotubes/silver nanoparticles as surface-enhanced Raman scattering probe for in-situ derivatization and selective determination of nitrite ions in meat product. Talanta 220:121366 doi: 10.1016/j.talanta.2020.121366 |
[119] |
Yang Q, Sun DW, Pu H. 2023. Porous materials nanohybridized with metal nanoparticles as substrates for enhancing SERS detection in food safety applications. Trends in Food Science & Technology 141:104202 doi: 10.1016/j.jpgs.2023.104202 |
[120] |
Zhang Y, Yang Z, Zou Y, Farooq S, Li Y, et al. 2023. Novel Ag-coated nanofibers prepared by electrospraying as a SERS platform for ultrasensitive and selective detection of nitrite in food. Food Chemistry 412:135563 doi: 10.1016/j.foodchem.2023.135563 |
[121] |
Liang F, Huang Y, Miao J, Lai K. 2024. A simple and efficient alginate hydrogel combined with surface-enhanced Raman spectroscopy for quantitative analysis of sodium nitrite in meat products. Analyst 149:1518−26 doi: 10.1039/D3AN01771K |
[122] |
Gu C, Xiang Y, Guo H, Shi H. 2016. Label-free fluorescence detection of melamine with a truncated aptamer. Analyst 141:4511−17 doi: 10.1039/C6AN00537C |
[123] |
Shen T, Zhou T, Wan Y, Su Y. 2018. High-precision and low-cost wireless 16-channel measurement system for malachite green detection. Micromachines 9:646 doi: 10.3390/mi9120646 |
[124] |
Li G, Zhang X, Zheng F, Liu J, Wu D. 2020. Emerging nanosensing technologies for the detection of β-agonists. Food Chemistry 332:127431 doi: 10.1016/j.foodchem.2020.127431 |
[125] |
Rajkumar M, Li YS, Chen SM. 2013. Electrochemical detection of toxic ractopamine and salbutamol in pig meat and human urine samples by using poly taurine/zirconia nanoparticles modified electrodes. Colloids and Surfaces B: Biointerfaces 110:242−47 doi: 10.1016/j.colsurfb.2013.03.038 |
[126] |
Vass M, Hruska K, Franek M. 2008. Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Veterinární Medicína 53:469−500 doi: 10.17221/1979-VETMED |
[127] |
Xie Y, Chen T, Guo Y, Cheng Y, Qian H, et al. 2019. Rapid SERS detection of acid orange II and brilliant blue in food by using Fe3O4@Au core-shell substrate. Food Chemistry 270:173−80 doi: 10.1016/j.foodchem.2018.07.065 |
[128] |
Xia Z, Cai W, Shao X. 2015. Rapid discrimination of slimming capsules based on illegal additives by electronic nose and flash gas chromatography. Journal of Separation Science 38:621−25 doi: 10.1002/jssc.201400941 |
[129] |
Fu Y, Zhou Z, Kong H, Lu X, Zhao X, et al. 2016. Nontargeted screening method for illegal additives based on ultrahigh-performance liquid chromatography–high-resolution mass spectrometry. Analytical Chemistry 88:8870−77 doi: 10.1021/acs.analchem.6b02482 |
[130] |
Oplatowska M, Stevenson PJ, Schulz C, Hartig L, Elliott CT. 2011. Development of a simple gel permeation clean-up procedure coupled to a rapid disequilibrium enzyme-linked immunosorbent assay (ELISA) for the detection of Sudan I dye in spices and sauces. Analytical and Bioanalytical Chemistry 401:1411−22 doi: 10.1007/s00216-011-5185-y |
[131] |
Yan B, Sun K, Chao K, Alharbi NS, Li J, et al. 2018. Fabrication of a novel transparent SERS substrate comprised of Ag-nanoparticle arrays and its application in rapid detection of ractopamine on meat. Food Analytical Methods 11:2329−35 doi: 10.1007/s12161-018-1216-z |
[132] |
Wu H, Wang J, Yang Q, Qin S, Li Z, et al. 2023. Ultrasensitive and stable SERS detection by defect engineering constructed Ag@Ga-doped ZnO core-shell nanoparticles. Applied Surface Science 621:156873 doi: 10.1016/j.apsusc.2023.156873 |
[133] |
Majhi SM, Rai P, Yu YT. 2015. Facile approach to synthesize Au@ZnO core-shell nanoparticles and their application for highly sensitive and selective gas sensors. ACS Applied Materials & Interfaces 7:9462−68 doi: 10.1021/acsami.5b00055 |
[134] |
Su L, Hu H, Tian Y, Jia C, Wang L, et al. 2021. Highly Sensitive Colorimetric/Surface-Enhanced Raman Spectroscopy Immunoassay Relying on a Metallic Core-Shell Au/Au Nanostar with Clenbuterol as a Target Analyte. Analytical Chemistry 93:8362−69 doi: 10.1021/acs.analchem.1c01487 |
[135] |
Tang X, Zuo J, Yang C, Jiang J, Zhang Q, et al. 2023. Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): principles, application, and perspective. TrAC Trends in Analytical Chemistry 165:117144 doi: 10.1016/j.trac.2023.117144 |
[136] |
Petropoulos K, Bodini SF, Fabiani L, Micheli L, Porchetta A, et al. 2019. Re-modeling ELISA kits embedded in an automated system suitable for on-line detection of algal toxins in seawater. Sensors and Actuators B: Chemical 283:865−72 doi: 10.1016/j.snb.2018.12.083 |
[137] |
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, et al. 2023. Recent advances in the detection of food toxins using mass spectrometry. Chemical Research in Toxicology 36:1834−63 doi: 10.1021/acs.chemrestox.3c00241 |
[138] |
Gupta R, Raza N, Bhardwaj SK, Vikrant K, Kim KH, et al. 2021. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. Journal of Hazardous Materials 401:123379 doi: 10.1016/j.jhazmat.2020.123379 |
[139] |
Subekin A, Alieva R, Kukushkin V, Oleynikov I, Zavyalova E. 2023. Rapid SERS detection of botulinum neurotoxin type A. Nanomaterials 13:2531 doi: 10.3390/nano13182531 |
[140] |
Kim K, Choi N, Jeon JH, Rhie GE, Choo J. 2019. SERS-Based Immunoassays for the Detection of Botulinum Toxins A and B Using Magnetic Beads. Sensors 19:4081 doi: 10.3390/s19194081 |
[141] |
Jia X, Wang K, Li X, Liu Z, Liu Y, et al. 2022. Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO2@Au nanoparticles. Nanomedicine-Nanotechnology Biology and Medicine 41:102522 doi: 10.1016/j.nano.2022.102522 |
[142] |
Abbas O, Zadravec M, Baeten V, Mikuš T, Lešić T, et al. 2018. Analytical methods used for the authentication of food of animal origin. Food Chemistry 246:6−17 doi: 10.1016/j.foodchem.2017.11.007 |
[143] |
Du J, Gan M, Xie Z, Zhou C, Li M, et al. 2023. Current progress on meat food authenticity detection methods. Food Control 152:109842 doi: 10.1016/j.foodcont.2023.109842 |
[144] |
Cheubong C, Sunayama H, Takano E, Kitayama Y, Minami H, et al. 2023. A rapid abiotic/biotic hybrid sandwich detection for trace pork adulteration in halal meat extract. Nanoscale 15:15171−78 doi: 10.1039/D3NR02863A |
[145] |
Sezer B, Bjelak A, Velioglu HM, Boyaci IH. 2021. Protein based evaluation of meat species by using laser induced breakdown spectroscopy. Meat Science 172:108361 doi: 10.1016/j.meatsci.2020.108361 |
[146] |
Liu H, Cao T, Chen H, Zhang J, Li W, et al. 2023. Two-color lateral flow nucleic acid assay combined with double-tailed recombinase polymerase amplification for simultaneous detection of chicken and duck adulteration in mutton. Journal of Food Composition and Analysis 118:105209 doi: 10.1016/j.jfca.2023.105209 |
[147] |
Mansouri M, Fathi F, Jalili R, Shoeibie S, Dastmalchi S, et al. 2020. SPR enhanced DNA biosensor for sensitive detection of donkey meat adulteration. Food Chemistry 331:127163 doi: 10.1016/j.foodchem.2020.127163 |
[148] |
Schmutzler M, Beganovic A, Boehler G, Huck CW. 2015. Methods for detection of pork adulteration in veal product based on FT-NIR spectroscopy for laboratory, industrial and on-site analysis. Food Control 57:258−67 doi: 10.1016/j.foodcont.2015.04.019 |
[149] |
Kuswandi B, Gani AA, Ahmad M. 2017. Immuno strip test for detection of pork adulteration in cooked meatballs. Food Bioscience 19:1−6 doi: 10.1016/j.fbio.2017.05.001 |
[150] |
Windarsih A, Bakar NKA, Dachriyanus, Yuliana ND, Riswanto FDO, et al. 2023. Analysis of pork in beef sausages using LC-orbitrap HRMS Untargeted metabolomics combined with chemometrics for halal authentication study. Molecules 28:5964 doi: 10.3390/molecules28165964 |
[151] |
Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, et al. 2020. Comparative review and the recent progress in detection technologies of meat product adulteration. Comprehensive Reviews in Food Science and Food Safety 19:2256−96 doi: 10.1111/1541-4337.12579 |
[152] |
Perez IMN, Badaró AT, Barbon S, Barbon A, Pollonio MAR, Barbin DF. 2018. Classification of chicken parts using a portable near-infrared (NIR) spectrophotometer and machine learning. Applied Spectroscopy 72:1774−80 doi: 10.1177/0003702818788878 |
[153] |
Velásquez L, Cruz-Tirado JP, Siche R, Quevedo R. 2017. An application based on the decision tree to classify the marbling of beef by hyperspectral imaging. Meat Science 133:43−50 doi: 10.1016/j.meatsci.2017.06.002 |
[154] |
Kumar A, Kumar RR, Sharma BD, Gokulakrishnan P, Mendiratta SK, Sharma D. 2015. Identification of species origin of meat and meat products on the DNA basis: a review. Critical Reviews in Food Science and Nutrition 55:1340−51 doi: 10.1080/10408398.2012.693978 |
[155] |
Seddaoui N, Amine A. 2020. A sensitive colorimetric immunoassay based on poly(dopamine) modified magnetic nanoparticles for meat authentication. LWT - Food Science and Technology 122:109045 doi: 10.1016/j.lwt.2020.109045 |
[156] |
Liu J, Chen J, Wu D, Huang M, Chen J, et al. 2021. CRISPR-/Cas12a-mediated liposome-amplified strategy for the surface-enhanced Raman scattering and naked-eye detection of nucleic acid and application to food authenticity screening. Analytical Chemistry 93:10167−74 doi: 10.1021/acs.analchem.1c01163 |
[157] |
Khalil I, Yehye WAA, Muhd Julkapli N, Sina AAI, Rahmati S, et al. 2020. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration. Analyst 145:1414−26 doi: 10.1039/C9AN02106J |
[158] |
Khalil I, Yehye WA, Muhd Julkapli N, Ibn Sina AA, Islam Chowdhury F, et al. 2021. Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor. Vibrational Spectroscopy 116:103293 doi: 10.1016/j.vibspec.2021.103293 |
[159] |
Zhao J, Ni Y, Tan L, Zhang W, Zhou H, et al. 2024. Recent advances in meat freshness "magnifier": fluorescence sensing. Critical Reviews in Food Science and Nutrition 4:11626−42 doi: 10.1080/10408398.2023.2241553 |
[160] |
Su L, Nian Y, Li C. 2023. Microencapsulation to improve the stability of natural pigments and their applications for meat products. Food Materials Research 3:10 doi: 10.48130/fmr-2023-0010 |
[161] |
Johnson J, Atkin D, Lee K, Sell M, Chandra S. 2019. Determining meat freshness using electrochemistry: are we ready for the fast and furious? Meat Science 150:40−46 doi: 10.1016/j.meatsci.2018.12.002 |
[162] |
Duan X, Li Z, Wang L, Lin H, Wang K. 2023. Engineered nanomaterials-based sensing systems for assessing the freshness of meat and aquatic products: A state-of-the-art review. Comprehensive Reviews in Food Science and Food Safety 22:430−50 doi: 10.1111/1541-4337.13074 |
[163] |
Ye H, Koo S, Zhu B, Ke Y, Sheng R, et al. 2022. Real-Time Fluorescence Screening Platform for Meat Freshness. Analytical Chemistry 94:15423−32 doi: 10.1021/acs.analchem.2c03326 |
[164] |
Qu F, Ren D, He Y, Nie P, Lin L, et al. 2018. Predicting pork freshness using multi-index statistical information fusion method based on near infrared spectroscopy. Meat Science 146:59−67 doi: 10.1016/j.meatsci.2018.07.023 |
[165] |
Lin X, Li N, Xiao Q, Guo Y, Wei J, et al. 2022. Polyvinyl alcohol/starch-based film incorporated with grape skin anthocyanins and metal-organic framework crystals for colorimetric monitoring of pork freshness. Food Chemistry 395:133613 doi: 10.1016/j.foodchem.2022.133613 |
[166] |
Qu C, Fang H, Yu F, Chen J, Su M, et al. 2024. Artificial nose of scalable plasmonic array gas sensor for multi-dimensional SERS recognition of volatile organic compounds. Chemical Engineering Journal 482:148773 doi: 10.1016/j.cej.2024.148773 |
[167] |
Sun J, Zhang Z, Li H, Yin H, Hao P, et al. 2022. Ultrasensitive SERS analysis of liquid and gaseous putrescine and cadaverine by a 3D-rosettelike nanostructure-decorated flexible porous substrate. Analytical Chemistry 94:5273−83 doi: 10.1021/acs.analchem.1c05013 |
[168] |
Kim H, Trinh BT, Kim KH, Moon J, Kang H, et al. 2021. Au@ZIF-8 SERS paper for food spoilage detection. Biosensors & Bioelectronics 179:113063 doi: 10.1016/j.bios.2021.113063 |