[1]

Rong C, Wang Y, Chen M, Lu Y, Wu Z, et al. 2023. A comprehensive analysis of metamaterial-coupled WPT systems for low electromagnetic field leakage. IEEE Transactions on Electromagnetic Compatibility 65(1):166−76

doi: 10.1109/TEMC.2022.3212539
[2]

Zagirnyak M, Nykyforov V, Sakun O, Chorna O. 2017. The industrial electrical equipment screened magnetic fields effect on model organisms. 2017 International Conference on Modern Electrical and Energy Systems, Kremenchuk, Ukraine, 15−17 November, 2017. USA: IEEE. pp. 380−83. doi: 10.1109/MEES.2017.8248938

[3]

Zhu K, Kiourti A. 2022. A review of magnetic field emissions from the human body: sources, sensors, and uses. IEEE Open Journal of Antennas and Propagation 3:732−44

doi: 10.1109/OJAP.2022.3186643
[4]

Lin K, Xu X, Zhao T, Chen SE, Braxtan N, et al. 2022. Passive Shielding Design of an Inductive Power Transfer System for Railway Applications. 2022 IEEE Transportation Electrification Conference & Expo, Anaheim, CA, USA, 15−17 June, 2022. USA: IEEE. pp. 606−10. doi: 10.1109/ITEC53557.2022.9814018

[5]

Meng J, Lan H, Lu S, Cheng R, Wei R, et al. 2023. Passive magnetic shielding study for wireless power transfer system. 2023 26 th International Conference on Electrical Machines and Systems, Zhuhai, China, 5−8 November, 2023. USA: IEEE. pp. 1928-32. doi: 10.1109/ICEMS59686.2023.10344786

[6]

Sun X, Wei B, Li Y, Yang J. 2022. A new model for analysis of the shielding effectiveness of multilayer infinite metal meshes in a wide frequency range. IEEE Transactions on Electromagnetic Compatibility 64(1):102−10

doi: 10.1109/TEMC.2021.3104119
[7]

Kvitkovic J, Patel S, Pamidi S. 2017. Magnetic shielding characteristics of hybrid high temperature superconductor/ferromagnetic material multilayer shields. IEEE Transactions on Applied Superconductivity 27:4700705

doi: 10.1109/TASC.2016.2645561
[8]

Ahn S, Hwang C, Park HH. 2014. Optimized shield design for reduction of EMF from wireless power transfer systems. IEICE Electronics Express 11:20130930

doi: 10.1587/elex.10.20130930
[9]

Olukotun B, Partridge JS, Bucknall RWG. 2019. Loss performance evaluation of ferrite-cored wireless power system with conductive and magnetic shields. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September to 2 October 2019. USA: IEEE. pp. 1−5 doi: 10.1109/ISGTEurope.2019.8905437

[10]

Tan L, Elnail KEI, Ju MH, Huang X. 2019. Comparative analysis and design of the shielding techniques in WPT systems for charging EVs. Energies 12(11):2115

doi: 10.3390/en12112115
[11]

Idris Elnait KE, Huang L, Tan L, Wang S, Wu X. 2018. Resonant reactive current shield design in WPT systems for charging EVs. 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference, Kota Kinabalu, Malaysia, 7−10 October, 2018. USA: IEEE. pp. 56−59. doi: 10.1109/APPEEC.2018.8566600

[12]

Park J, Shin Y, Kim D, Park B, Ahn S. 2018. Planar Resonance Reactive Shield for Reducing the EMI in Portable WPT Device Application. 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, Long Beach, CA, USA, 30 July − 3 August 2018. USA: IEEE. pp. 419−22. doi: 10.1109/EMCSI.2018.8495362

[13]

Pavelek M, Frivaldsky M, Spanik P. 2018. Influence of the passive shielding on the optimal working point of the wireless power transfer systems. 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Amalfi, Italy, 20−22 June 2018. USA: IEEE. pp. 773−78. doi: 10.1109/SPEEDAM.2018.8445377

[14]

Yan L, Gao H, Rong C, Liao Z, Xia C, et al. 2023. Efficiency Improvement of 6.78MHz Metamaterials for WPT System. 2023 26 th International Conference on Electrical Machines and Systems, Zhuhai, China, 5−8 November, 2023. USA: IEEE. pp. 3812−15. doi: 10.1109/ICEMS59686.2023.10344727

[15]

Hsu HM, Huang YK, Wu TL. 2019. Implementation of constant current performance of 13.56MHz Wireless Power Transfer system. 2019 IEEE Wireless Power Transfer Conference, London, UK, 18−21 June, 2019. USA: IEEE. pp. 385−89. doi: 10.1109/WPTC45513.2019.9055703

[16]

Mao H, Yang B, Li Z, Song S, Zhao X. 2017. Flexible and efficient 6.78MHz wireless charging for metal-cased mobile devices using controlled resonance power architecture. 2017 IEEE Wireless Power Transfer Conference, Taipei, Taiwan, 10−12 May, 2017. USA: IEEE. pp. 1−4. doi: 10.1109/WPT.2017.7953864

[17]

Xu Z, Rodriguez-Villegas E. 2022. A 6.78MHz mid-range wireless power charging system for milliwatt-power-level long-term biomedical sensing applications. 2022 IEEE Biomedical Circuits and Systems Conference, Taipei, Taiwan, 13−15 October, 2022. USA: IEEE. pp. 270−74. doi: 10.1109/BioCAS54905.2022.9948633

[18]

Li K, Wu J, Wang M, Yucel AC, Hui SYR. 2023. A sandwich structure for cost-effective printed-circuit-board wireless power resonator. 2023 IEEE Applied Power Electronics Conference and Exposition, Orlando, FL, USA, 19−23 March, 2023. USA: IEEE. pp. 818−21. doi: 10.1109/APEC43580.2023.10131590

[19]

Yang Y, Tan SC, Hui SYR. 2019. Communication-free control scheme for Qi-compliant Wireless Power Transfer systems. 2019 IEEE Energy Conversion Congress and Exposition, Baltimore, MD, USA, 29 September − 3 October 2019. USA: IEEE. pp. 4955−60. doi: 10.1109/ECCE.2019.8912496

[20]

Yang Y, Liang HWR, Tan SC, Hui SYR. 2021. Design of a wireless power modulator for wireless power transfer systems. 2021 IEEE 12 th Energy Conversion Congress & Exposition - Asia, Singapore, 24-27 May, 2021. USA: IEEE. pp. 816-20. doi: 10.1109/ECCE-Asia49820.2021.9479411

[21]

Li K, Wu J, Yucel AC, Hui SYR. 2023. New Printed-Circuit-Board Resonators With High Quality Factor and Transmission Efficiency for Mega-Hertz Wireless Power Transfer Applications. IEEE Transactions on Power Electronics 38(10):13207−18

doi: 10.1109/TPEL.2023.3293785
[22]

Shevchenko V, Husev O, Strzelecki R, Pakhaliuk B, Poliakov N, et al. 2019. Compensation topologies in IPT systems: standards, requirements, classification, analysis, comparison and application. IEEE Access 7:120559−80

doi: 10.1109/ACCESS.2019.2937891