[1] |
Pulvento C, Sellami Mh, Lavini A. 2022. Yield and quality of Amaranthus hypochondriacus grain amaranth under drought and salinity at various phenological stages in southern Italy. Journal of the Science of Food and Agriculture 102:5022−33 doi: 10.1002/jsfa.11088 |
[2] |
Zhang YY, Stockmann R, Ng K, Ajlouni S. 2022. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Critical Reviews in Food Science and Nutrition 62:1696−712 doi: 10.1080/10408398.2020.1846014 |
[3] |
García MA, Viña SZ. 2015. Gluten-free autochthonous foodstuff (South America and other countries). In Advances in the Understanding of Gluten Related Pathology and the Evolution of Gluten-Free Foods, ed. Arranz Sanz E, Fernández-Bañares F, Rosell C, Rodrigo L, Peña A. Barcelona, Spain: OmniaScience. pp. 605−44. doi: 10.3926/oms.266 |
[4] |
Piperno DR. 2011. The origins of plant cultivation and domestication in the new world tropics: patterns, process, and new developments. Current Anthropology 52:S453−S470 doi: 10.1086/659998 |
[5] |
FAO. 2019. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations, Rome. https://openknowledge.fao.org/server/api/core/bitstreams/e212ee81-9790-433a-bd43-08046d63abdc/content |
[6] |
Raiger HL, Mishra D, Jajoria NK, Deewan P, Dhaliwal YS. 2023. Grain amaranth: nutrient enriched grain of future. Intensive Agriculture 57:4−13 |
[7] |
Kishore N, Dogra RK, Thakur SR, Chahota RK. 2007. Stability analysis for seed yield and component traits in amaranthus [Amaranthus hypochondriacus L.] in the high altitude dry temperate regions. Indian Journal of Genetics and Plant Breeding 67(2):153−55 |
[8] |
Gichana Z, Liti D, Wakibia J, Ogello E, Drexler S, et al. 2019. Efficiency of pumpkin (Cucurbita pepo), sweet wormwood (Artemisia annua) and amaranth (Amaranthus dubius) in removing nutrients from a smallscale recirculating aquaponic system. Aquaculture International 27:1767−86 doi: 10.1007/s10499-019-00442-x |
[9] |
Sammour RH, Radwan S, Mira M. 2012. Genetic diversity in genus Amaranthus: From morphology to genomic DNA. Research & Reviews in BioSciences 6:351−60 |
[10] |
Alegbejo JO. 2013. Nutritional value and utilization of Amaranthus (Amaranthus spp.) – A review. Bayero Journal of Pure and Applied Sciences 6:136−43 doi: 10.4314/bajopas.v6i1.27 |
[11] |
Medina-Remón A, Kirwan R, Lamuela-Raventós RM, Estruch R. 2018. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Critical Reviews in Food Science and Nutrition 58:262−96 doi: 10.1080/10408398.2016.1158690 |
[12] |
Gengatharan A, Dykes GA, Choo WS. 2015. Betalains: Natural plant pigments with potential application in functional foods. LWT - Food Science and Technology 64:645−49 doi: 10.1016/j.lwt.2015.06.052 |
[13] |
Zhang L, Virgous C, Si H. 2019. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. The Journal of Nutritional Biochemistry 69:19−30 doi: 10.1016/j.jnutbio.2019.03.009 |
[14] |
Berger A, Gremaud G, Baumgartner M, Rein D, Monnard I, et al. 2003. Cholesterol-lowering properties of amaranth grain and oil in hamsters. International Journal for Vitamin and Nutrition Research 73:39−47 doi: 10.1024/0300-9831.73.1.39 |
[15] |
Zambrana S, Lundqvist LCE, Veliz V, Catrina SB, Gonzales E, et al. 2018. Amaranthus caudatus stimulates insulin secretion in Goto-Kakizaki rats, a model of diabetes mellitus type 2. Nutrients 10:94 doi: 10.3390/nu10010094 |
[16] |
Barba de la Rosa A, Gómez-Cardona E, Hernández-Domínguez E, Huerta-Ocampo J, Jiménez-Islas H, et al. 2017. Effect of amaranth consumption on diabetes-related biomarkers in patients with diabetes. Diabetes, Obesity & Metabolic Disorders 3:5−10 |
[17] |
Sarker U, Hossain MM, Oba S. 2020. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Scientific Reports 10:1336 doi: 10.1038/s41598-020-57687-3 |
[18] |
Denham JM, Hill ID. 2013. Celiac disease and autoimmunity: review and controversies. Current Allergy and Asthma Reports 13:347−53 doi: 10.1007/s11882-013-0352-1 |
[19] |
Shukla A, Srivastava N, Suneja P, Yadav SK, Hussain Z, et al. 2018. Untapped amaranth (Amaranthus spp.) genetic diversity with potential for nutritional enhancement. Genetic Resources and Crop Evolution 65:243−53 doi: 10.1007/s10722-017-0526-0 |
[20] |
Lattimer JM, Haub MD. 2010. Effects of dietary fiber and its components on metabolic health. Nutrients 2:1266−89 doi: 10.3390/nu2121266 |
[21] |
Joshi DC, Sood S, Hosahatti R, Kant L, Pattanayak A, et al. 2018. From zero to hero: the past, present and future of grain amaranth breeding. Theoretical and Applied Genetics 131:1807−23 doi: 10.1007/s00122-018-3138-y |
[22] |
Dasgupta S, Hossain MM, Huq M, Wheeler D. 2015. Climate change and soil salinity: The case of coastal Bangladesh. Ambio 44:815−26 doi: 10.1007/s13280-015-0681-5 |
[23] |
Das S. 2016. Future prospects in amaranth research. In Amaranthus: A Promising Crop of Future, ed. Das S. Singapore: Springer. pp. 167−72. doi: 10.1007/978-981-10-1469-7_11 |
[24] |
Parra-Cota FI, Peña-Cabriales JJ, de los Santos-Villalobos S, Martínez-Gallardo NA, Délano-Frier JP. 2014. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS ONE 9:e88094 doi: 10.1371/journal.pone.0088094 |
[25] |
Omosun G, Markson A, Mbanasor O. 2008. Growth and anatomy of Amaranthus hybridus as affected by different crude oil concentrations. American-Eurasian Journal of Scientific Research 3:70−74 |
[26] |
Bhargava A, Srivastava S. 2020. Response of Amaranthus sp. to salinity stress: a review. In Emerging Research in Alternative Crops, eds. Hirich A, Choukr-Allah R, Ragab R. pp. 245−63. doi: 10.1007/978-3-319-90472-6_10 |
[27] |
Fan W, Xu JM, Lou HQ, Xiao C, Chen WW, et al. 2016. Physiological and molecular analysis of aluminium-induced organic acid anion secretion from grain amaranth (Amaranthus hypochondriacus L.) roots. International Journal of Molecular Sciences 17:608 doi: 10.3390/ijms17050608 |
[28] |
Wang YF, Wang JF, Xu ZM, She SH, Yang JQ, et al. 2020. l-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 (Azotobacter chroococcum) in roots of Amaranthus tricolor. Plant and Soil 451:357−70 doi: 10.1007/s11104-020-04531-2 |
[29] |
Sarker U, Oba S. 2018. Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology 186:999−1016 doi: 10.1007/s12010-018-2784-5 |
[30] |
Xu Z, Lu Z, Zhang L, Fan H, Wang Y, et al. 2021. Red mud based passivator reduced Cd accumulation in edible amaranth by influencing root organic matter metabolism and soil aggregate distribution. Environmental Pollution 275:116543 doi: 10.1016/j.envpol.2021.116543 |
[31] |
Roberts J, Florentine S. 2022. A review of the biology, distribution patterns and management of the invasive species Amaranthus palmeri S. Watson (Palmer amaranth): Current and future management challenges. Weed Research 62:113−22 doi: 10.1111/wre.12520 |
[32] |
Ramesha GK, Leno N, Radhika NS. 2021. Linking root phenomics, nutrient acquisition and utilisation in amaranthus with thermochemical organic fertilizer from biowaste. Rhizosphere 20:100426 doi: 10.1016/j.rhisph.2021.100426 |
[33] |
Devi R, Kaur T, Kour D, Yadav AN. 2022. Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatalysis and Agricultural Biotechnology 43:102404 doi: 10.1016/j.bcab.2022.102404 |
[34] |
Brust J, Claupein W, Gerhards R. 2014. Growth and weed suppression ability of common and new cover crops in Germany. Crop Protection 63:1−8 doi: 10.1016/j.cropro.2014.04.022 |
[35] |
Repo-Carrasco-Valencia R. 2017. Dietary fibre and bioactive compounds of kernels. In Pseudocereals: Chemistry and technology, eds. Haros CM, Schonlechner R. UK: John Wiley & Sons. pp. 71−93. doi: 10.1002/9781118938256.ch4 |
[36] |
Assad R, Reshi ZA, Jan S, Rashid I. 2017. Biology of amaranths. The Botanical Review 83:382−436 doi: 10.1007/s12229-017-9194-1 |
[37] |
Ward SM, Webster TM, Steckel LE. 2013. Palmer amaranth (Amaranthus palmeri): A review. Weed Technology 27:12−27 doi: 10.1614/WT-D-12-00113.1 |
[38] |
Ojo OD, Akinrinde EA, Akoroda M. 2011. Phosphorus use efficiency in amaranth (Amaranthus cruentus L.). International Journal of AgriScience 1:115−29 |
[39] |
Pandeya D, López-Arredondo DL, Janga MR, Campbell LM, Estrella-Hernández P, et al. 2018. Selective fertilization with phosphite allows unhindered growth of cotton plants expressing the ptxD gene while suppressing weeds. Proceedings of the National Academy of Sciences of the United States of America 115:E6946−E6955 doi: 10.1073/pnas.1804862115 |
[40] |
Omamt EN, Hammes PS, Robbertse PJ. 2006. Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. New Zealand Journal of Crop and Horticultural Science 34:11−22 doi: 10.1080/01140671.2006.9514382 |
[41] |
Chunilall V, Kindness A, Jonnalagadda S. 2005. Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel. Journal of Environmental Science and Health, Part B 40:375−84 doi: 10.1081/PFC-200045573 |
[42] |
Sanni KO. 2016. Effect of compost, cow dung and NPK 15-15-15 fertilizer on growth and yield performance of Amaranth (Amaranthus hybridus). International Journal of Advances in Scientific Research 2:76−82 doi: 10.7439/ijasr.v2i3.3148 |
[43] |
Zhang X, Shi J, Fu Y, Zhang T, Jiang L, et al. 2023. Structural, nutritional, and functional properties of amaranth protein and its application in the food industry: A review. Sustainable Food Proteins 1:45−55 doi: 10.1002/sfp2.1002 |
[44] |
Lamothe LM, Srichuwong S, Reuhs BL, Hamaker BR. 2015. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chemistry 167:490−96 doi: 10.1016/j.foodchem.2014.07.022 |
[45] |
Soriano-García M, Saraid Aguirre-Díaz I. 2019. Nutritional functional value and therapeutic utilization of Amaranth. In Nutritional value of amaranth, ed. Waisundara VY. IntechOpen. pp. 1−18. doi: 10.5772/intechopen.86897 |
[46] |
Jan N, Hussain SZ, Naseer B, Bhat TA. 2023. Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chemistry: X 18:100687 doi: 10.1016/j.fochx.2023.100687 |
[47] |
Sidorova YS, Petrov NA, Perova IB, Kolobanov AI, Zorin SN. 2023. Physical and chemical characterization and bioavailability evaluation in vivo of Amaranth protein concentrate. Foods 12:1728 doi: 10.3390/foods12081728 |
[48] |
Castro-Alba V, Lazarte CE, Perez-Rea D, Carlsson NG, Almgren A, et al. 2019. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. Journal of the Science of Food and Agriculture 99:5239−48 doi: 10.1002/jsfa.9793 |
[49] |
Gebhardt S, Lemar L, Haytowitz D, Pehrsson P, Nickle M, et al. 2006. USDA national nutrient database for standard reference, release 19. United States Department of AgricultureAgricultural Research Service. www.ars.usda.gov/research/publications/publication/?seqNo115=199178 |
[50] |
Thakur P, Kumar K, Ahmed N, Chauhan D, Eain Hyder Rizvi QU, et al. 2021. Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science 4:917−25 doi: 10.1016/j.crfs.2021.11.019 |
[51] |
Lynch SR, Cook JD. 1980. Interaction of vitamin C and iron. Annals of the New York Academy of Sciences 355:32−44 doi: 10.1111/j.1749-6632.1980.tb21325.x |
[52] |
López-Alonso WM, Gallegos-Martínez J, Reyes-Hernández J. 2021. Impact of a nutritional intervention based on amaranth flour consumption to recovery undernourished children. Current Research in Nutrition and Food Science Journal 9:222−32 doi: 10.12944/CRNFSJ.9.1.22 |
[53] |
Tibagonzeka EJ. 2014. Potential of grain amaranth to improve food and nutrition security in rural Uganda. The case study of Apac, Kamuli and Nakasongola Districts. Master Thesis. Makerere University, Uganda. 144 pp. https://catalog.ihsn.org/citations/41408 |
[54] |
Macharia-Mutie CW, Omusundi AM, Mwai JM, Mwangi AM, Brouwer ID. 2013. Simulation of the effect of maize porridge fortified with grain amaranth or micronutrient powder containing NaFeEDTA on iron intake and status in Kenyan children. Public Health Nutrition 16:1605−13 doi: 10.1017/S1368980012005174 |
[55] |
Gagnon-Dufresne MC, Fortin G, Bunkeddeko K, Kalumuna C, Zinszer K. 2022. Understanding malnutrition management through a socioecological lens: Evaluation of a community-based child malnutrition program in rural Uganda. Health & Social Care in the Community 30:e5998−e6008 doi: 10.1111/hsc.14032 |
[56] |
Nabuuma D, Nakimbugwe D, Byaruhanga YB, Saalia FK, Phillips RD, et al. 2013. Formulation of a drinkable peanut-based therapeutic food for malnourished children using plant sources. International Journal of Food Sciences and Nutrition 64:467−75 doi: 10.3109/09637486.2012.746289 |
[57] |
Awan TH. 2015. Eco-efficient weed and nutrient management strategies, and modeling rice-weed interactions in mechanized dry-seeded rice. Thesis. University of the Philippines, Los Baños, Philippines. 298 pp. https://agris.fao.org/search/en/records/64745c0e2437ad1e5b9656fa |
[58] |
Adhikary D, Khatri-Chhetri U, Slaski J. 2020. Amaranth: an ancient and high-quality wholesome crop. In Nutritional value of Amaranth, ed. IntechOpen. pp. 111−42. doi: 10.5772/intechopen.88093 |
[59] |
Nyonje WA, Schafleitner R, Abukutsa-Onyango M, Yang RY, Makokha A, et al. 2021. Precision phenotyping and association between morphological traits and nutritional content in Vegetable Amaranth (Amaranthus spp.). Journal of Agriculture and Food Research 5:100165 doi: 10.1016/j.jafr.2021.100165 |
[60] |
Bizzaro N, Tozzoli R, Villalta D, Fabris M, Tonutti E. 2012. Cutting-edge issues in celiac disease and in gluten intolerance. Clinical Reviews in Allergy & Immunology 42:279−87 doi: 10.1007/s12016-010-8223-1 |
[61] |
Jamalluddin N. 2020. Genetic diversity analysis and trait phenotyping for drought tolerance in Amaranth (Amaranthus spp.) germplasm. Thesis. University of Nottingham Malaysia Campus, Malaysia. https://eprints.nottingham.ac.uk/60530/ |
[62] |
Cominelli F, Reguzzi MC, Nicoli Aldini R, Mazzoni E. 2020. Insect pest susceptibility of grains and seeds recently introduced to the Italian market: An experimental evaluation. Journal of Stored Products Research 89:101691 doi: 10.1016/j.jspr.2020.101691 |
[63] |
Anderson JA, Ellsworth PC, Faria JC, Head GP, Owen MDK, et al. 2019. Genetically engineered crops: importance of diversified integrated pest management for agricultural sustainability. Frontiers in Bioengineering and Biotechnology 7:24 doi: 10.3389/fbioe.2019.00024 |
[64] |
Schafleitner R, Lin YP, Dinssa FF, N'Danikou S, Finkers R, et al. 2022. The World Vegetable Center Amaranthus germplasm collection: Core collection development and evaluation of agronomic and nutritional traits. Crop Science 62:1173−87 doi: 10.1002/csc2.20715 |
[65] |
Pal A, Swain SS, Das AB, Mukherjee AK, Chand PK. 2013. Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology - Plant 49:114−28 doi: 10.1007/s11627-013-9489-9 |
[66] |
Swain SS, Sahu L, Barik DP, Chand PK. 2010. Agrobacterium × plant factors influencing transformation of 'Joseph's coat' (Amaranthus tricolor L.). Scientia Horticulturae 125:461−68 doi: 10.1016/j.scienta.2010.04.034 |
[67] |
Yaroshko O. 2021. Achievements in genetic engineering of Amaranthus L. representatives. International Journal of Secondary Metabolite 8:172−85 doi: 10.21448/ijsm.925737 |
[68] |
Castellanos-Arévalo AP, Estrada-Luna AA, Cabrera-Ponce JL, Valencia-Lozano E, Herrera-Ubaldo H, et al. 2020. Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Reports 39:1143−60 doi: 10.1007/s00299-020-02553-9 |
[69] |
Jofre-Garfias AE, Villegas-Sepúlveda N, Cabrera-Ponce J, Adame-Alvarez R, Herrera-Estrella L, et al. 1997. Agrobacterium-mediated transformation of Amaranthus hypochondriacus: light-and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter. Plant Cell Reports 16:847−52 doi: 10.1007/s002990050332 |
[70] |
Xie F, Stewart CN Jr, Taki FA, He Q, Liu H, et al. 2014. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnology Journal 12:354−66 doi: 10.1111/pbi.12142 |
[71] |
Martínez Núñez M, Ruíz Rivas M, Gregorio Jorge J, Hernández PFV, Luna Suárez S, et al. 2021. Identification of genuine and novel miRNAs in Amaranthus hypochondriacus from high-throughput sequencing data. Genomics 113:88−103 doi: 10.1016/j.ygeno.2020.11.027 |
[72] |
Jin H, Xu M, Chen H, Zhang S, Han X, et al. 2016. Comparative proteomic analysis of differentially expressed proteins in Amaranthus hybridus L. roots under cadmium stress. Water, Air, & Soil Pollution 227:220 doi: 10.1007/s11270-016-2914-z |
[73] |
Rodríguez JP, Rahman H, Thushar S, Singh RK. 2020. Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Frontiers in Genetics 11:49 doi: 10.3389/fgene.2020.00049 |
[74] |
Le VT, Kim MS, Jung YJ, Kang KK, Cho YG. 2022. Research trends and challenges of using CRISPR/Cas9 for improving rice productivity. Agronomy 12:164 doi: 10.3390/agronomy12010164 |
[75] |
Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, et al. 2020. Genetically modified crops: current status and future prospects. Planta 251:91 doi: 10.1007/s00425-020-03372-8 |
[76] |
Espitia-Rangel E. 2018. Breeding of grain amaranth. In Amaranth Biology, Chemistry, and Technology. Boca Raton: CRC press. pp. 23-38. doi: 10.1201/9781351069601-3 |
[77] |
Castellanos-Gallo L, Galicia-García T, Estrada-Moreno I, Mendoza-Duarte M, Márquez-Meléndez R, et al. 2019. Development of an expanded snack of rice starch enriched with amaranth by extrusion process. Molecules 24:2430 doi: 10.3390/molecules24132430 |
[78] |
Peña N, Minguez S, Escobar JD. 2024. Current Production Scenario and Functional Potential of the Whole Amaranth Plant: A Review. In Pseudocereals - Recent Advances and New Perspectives, ed. Viduranga YW. Rijeka: IntechOpen. pp. 1−21. doi: 10.5772/intechopen.111881 |
[79] |
Akhter MJ, Sønderskov M, Loddo D, Ulber L, Hull R, et al. 2023. Opportunities and challenges for harvest weed seed control in European cropping systems. European Journal of Agronomy 142:126639 doi: 10.1016/j.eja.2022.126639 |
[80] |
Bensch CN, Horak MJ, Peterson D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Science 51:37−43 doi: 10.1614/0043-1745(2003)051[0037:iorpar]2.0.co;2 |
[81] |
Franssen AS, Skinner DZ, Al-Khatib K, Horak MJ, Kulakow PA. 2001. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Science 49:598−606 doi: 10.1614/0043-1745(2001)049[0598:IHAGFO]2.0.CO;2 |
[82] |
Trucco F, Tranel PJ. 2011. Amaranthus. In Wild Crop Relatives: Genomic and Breeding Resources, ed. Kole C. Berlin, Heidelberg: Springer. pp. 11−21. doi: 10.1007/978-3-642-20450-0_2 |
[83] |
Paiva ÉAS. 2021. Do calcium oxalate crystals protect against herbivory? The Science of Nature 108:24 doi: 10.1007/s00114-021-01735-z |
[84] |
Santos-Ballardo DU, Germán-Báez LJ, Cruz-Mendívil A, Fuentes-Gutiérrez CI, Milán-Carrillo J, et al. 2013. Expression of the acidic-subunit of amarantin, carrying the antihypertensive biopeptides VY, in cell suspension cultures of Nicotiana tabacum NT1. Plant Cell, Tissue and Organ Culture (PCTOC) 113:315−22 doi: 10.1007/s11240-012-0271-1 |
[85] |
Diouf A, Sarr F, Sene B, Ndiaye C, Momar Fall S, et al. 2019. Pathways for reducing anti-nutritional factors: prospects for Vigna unguiculata. Journal of Nutritional Health & Food Science 7:1−10 doi: 10.15226/jnhfs.2019.001157 |
[86] |
Bergqvist SW, Sandberg AS, Carlsson NG, Andlid T. 2005. Improved iron solubility in carrot juice fermented by homo- and hetero-fermentative lactic acid bacteria. Food Microbiology 22:53−61 doi: 10.1016/j.fm.2004.04.006 |
[87] |
Gopal KR, Kalla A, Srikanth K. 2017. High Pressure Processing of Fruits and Vegetable Products: A Review. international journal of pure and applied Bioscience 5:680−92 doi: 10.18782/2320-7051.2930 |
[88] |
Humer E, Schwarz C, Schedle K. 2015. Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition 99:605−25 doi: 10.1111/jpn.12258 |
[89] |
Kumar PA. 2002. Insect pest resistant transgenic crops. In Advances in microbial control of insect pests, ed. Upadhyay RK. Boston, MA: Springer. pp. 71−82. doi: 10.1007/978-1-4757-4437-8_4 |
[90] |
Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR. 2012. The trihelix family of transcription factors – light, stress and development. Trends in Plant Science 17:163−71 doi: 10.1016/j.tplants.2011.12.002 |
[91] |
Ma X, Vaistij FE, Li Y, Jansen van Rensburg WS, Harvey S, et al. 2021. A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. The Plant Journal 107:613−28 doi: 10.1111/tpj.15298 |
[92] |
Montgomery JS, Giacomini D, Waithaka B, Lanz C, Murphy BP, et al. 2020. Draft genomes of Amaranthus tuberculatus, Amaranthus hybridus, and Amaranthus palmeri. Genome Biology and Evolution 12:1988−93 doi: 10.1093/gbe/evaa177 |
[93] |
Yadav P, Mina U. 2019. Amaranthus: development opportunity. Indian Farming 69:27−31 |
[94] |
Magomedmirzoeva RG, Dogeev GD, Pivovarov VF, Gins VK, Gins MS. 2021. Economic efficiency of growing amaranth in Dagestan. IOP Conference Series: Earth and Environmental Science 650:012059 doi: 10.1088/1755-1315/650/1/012059 |
[95] |
Netshimbupfe MH, Berner J, Van Der Kooy F, Oladimeji O, Gouws C. 2023. The importance and use of Amaranthus for crop diversification in the SADC region. South African Journal of Botany 152:192−202 doi: 10.1016/j.sajb.2022.11.039 |
[96] |
D’Alessandro SP, Caballero J, Lichte J, Simpkin S. 2015. Kenya: Agricultural sector risk assessment. World Back Group. https://documents1.worldbank.org/curated/en/380271467998177940/pdf/100299-BRI-P148139-PUBLIC-Box393227B-Kenya-Policy-Note-web.pdf |
[97] |
Gregory PJ, Mayes S, Hui CH, Jahanshiri E, Julkifle A, et al. 2019. Crops For the Future (CFF): an overview of research efforts in the adoption of underutilised species. Planta 250:979−88 doi: 10.1007/s00425-019-03179-2 |
[98] |
Achigan-Dako EG, Sogbohossou OED, Maundu P. 2014. Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 197:303−17 doi: 10.1007/s10681-014-1081-9 |
[99] |
Huerta-Ocampo JA, Barba de la Rosa AP. 2011. Amaranth: A pseudo-cereal with nutraceutical properties. Current Nutrition & Food Science 7:1−9 doi: 10.2174/157340111794941076 |