[1] |
Duan H, Guo J, Xuan L, Wang Z, Li M, et al. 2020. Comparative chloroplast genomics of the genus Taxodium. BMC Genomics 21:114 doi: 10.1186/s12864-020-6532-1 |
[2] |
Brunsfeld SJ, Pamela SS, Douglas ES, Paul AG, Christopher JQ, et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19:253−62 doi: 10.2307/2419600 |
[3] |
Zhang JJ, Pan SH, Zhu PSH, Zhu WJ, Niu HJ, et al. 2003. Taxodiomeria (Taxodiaceae), an intergeneric hybrid between Taxodium and Cryptomeria from Shanghai, People's Republic of China. SIDA, Contributions to Botany 2003:999−1006 |
[4] |
Wang C, Li C, Wei H, Xie Y, Han W. 2016. Effects of long-term periodic submergence on photosynthesis and growth of Taxodium distichum and Taxodium ascendens saplings in the hydro-fluctuation zone of the Three Gorges Reservoir of China. PLoS One 11(9):e0162867 doi: 10.1371/journal.pone.0162867 |
[5] |
Li C, Zhong Z, Geng Y, Schneider R. 2010. Comparative studies on physiological and biochemical adaptation of Taxodium distichum and Taxodium ascendens seedlings to different soil water regimes. Plant and Soil 329(1):481−94 doi: 10.1007/s11104-009-0174-z |
[6] |
Zheng Y, Wang D, Li X, Wang Z, Zhou Q, et al. 2021. Biometric identification of Taxodium spp. and their hybrid progenies by electrochemical fingerprints. Biosensors 11(10):403 doi: 10.3390/bios11100403 |
[7] |
Megonigal JP, Day FP. 1992. Effects of flooding on root and shoot production of bald cypress in large experimental enclosures. Ecology 73(4):1182−93 doi: 10.2307/1940668 |
[8] |
Denny GC, Michael AA. 2007. Taxonomy and nomenclature of baldcypress, pondcypress, and montezuma cypress: one, two, or three species? HortTechnology 17(1):125−27 doi: 10.21273/HORTTECH.17.1.125 |
[9] |
Allen JA, Pezeshki SR, Chambers JL. 1996. Interaction of flooding and salinity stress on baldcypress (Taxodium distichum). Tree Physio logy 16(1−2):307−13 doi: 10.1093/treephys/16.1-2.307 |
[10] |
Yu C, Xu S, Yin Y. 2016. Transcriptome analysis of the Taxodium 'Zhongshanshan 405' roots in response to salinity stress. Plant Physiology and Biochemistry 100:156−65 doi: 10.1016/j.plaphy.2016.01.009 |
[11] |
Lei X, Hua J, Zhang F, Wang Z, Pei X, et al. 2021. Identification and functional analysis of ThADH1 and ThADH4 genes involved in tolerance to waterlogging stress in Taxodium hybrid 'Zhongshanshan 406'. Genes 12(2):225 doi: 10.3390/genes12020225 |
[12] |
Yu C, Yin Y, Xu J. 2011. Four hybrid varieties of Taxodium. Scientia Silvae Sinicae 47(5):181−82 doi: 10.11707/j.1001-7488.20110531 |
[13] |
Guo J, Duan H, Xuan L, Wang Z, Hua J, et al. 2019. Identification and functional analysis of LecRLK genes in Taxodium 'Zhongshanshan'. PeerJ 7:e7498 doi: 10.7717/peerj.7498 |
[14] |
Yang Y, Xuan L, Yu C, Wang Z, Xu J, et al. 2018. High-density genetic map construction and quantitative trait loci identification for growth traits in (Taxodium distichum var. distichum × T. mucronatum) × T. mucronatum. BMC Plant Biology 18(1):263 doi: 10.1186/s12870-018-1493-0 |
[15] |
Tsumura Y, Tomaru N, Suyama Y, Bacchus S. 1999. Genetic diversity and differentiation of Taxodium in the south-eastern United States using cleaved amplified polymorphic sequences. Heredity 83(3):229−38 doi: 10.1038/sj.hdy.6885810 |
[16] |
Chen Y, Pan S, Zhang J, Zhu W, Niu H, et al. 2002. RAPD analysis of genetic relationships among natural populations of hybrid Taxodium mucronatum Tenore. Journal of Fudan University, Natural Science 41(6):641−45 |
[17] |
Yu C, Yin Y, Xu J. 2020. Identification of Taxodium hybrids by SRAP analysis. Scientia Silvae Sinicae 45(2):142−46 |
[18] |
Ling Y, Lu WF, Lu F, Wang YG, Chen JK, et al. 2006. PCR-RFLP and AP-PCR of rbcL and ITS of rDNA show that × Taxodiomeria peizhongii (Taxodium × Cryptomeria) is not an intergeneric hybrid. Journal of Integrative Plant Biology 48(4):468−72 doi: 10.1111/j.1744-7909.2006.00209.x |
[19] |
Li J, Milne RI, Ru D, Miao J, Tao W, et al. 2020. Allopatric divergence and hybridization within Cupressus chengiana (Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China. Molecular Ecology 29(7):1250−66 doi: 10.1111/mec.15407 |
[20] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114−20 doi: 10.1093/bioinformatics/btu170 |
[21] |
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754−60 doi: 10.1093/bioinformatics/btp324 |
[22] |
Matasci N, Hung LH, Yan ZX, Carpenter EJ, Wickett NJ, et al. 2014. Data access for the 1,000 Plants (1KP) project. GigaScience 3(1):2047-217X-3-17 doi: 10.1186/2047-217X-3-17 |
[23] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078−79 doi: 10.1093/bioinformatics/btp352 |
[24] |
Broad Institute. 2019. Picard toolkit. https://broadinstitute.github.io/picard/ |
[25] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20(9):1297−303 doi: 10.1101/gr.107524.110 |
[26] |
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27(15):2156−58 doi: 10.1093/bioinformatics/btr330 |
[27] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6):1547−49 doi: 10.1093/molbev/msy096 |
[28] |
Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19(9):1655−64 doi: 10.1101/gr.094052.109 |
[29] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81(3):559−75 doi: 10.1086/519795 |
[30] |
Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. PLoS Genetics 2(12):e190 doi: 10.1371/journal.pgen.0020190 |
[31] |
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312−13 doi: 10.1093/bioinformatics/btu033 |
[32] |
Álvarez-Carretero S, Tamuri AU, Battini M, Nascimento FF, Carlisle E, et al. 2022. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602:263−67 doi: 10.1038/s41586-021-04341-1 |
[33] |
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24(8):1586−91 doi: 10.1093/molbev/msm088 |
[34] |
Mao K, Milne RI, Zhang L, Peng Y, Liu J, et al. 2012. Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America 109(20):7793−98 doi: 10.1073/pnas.111431910 |
[35] |
Wheeler TJ. 2009. Large-scale neighbor-joining with NINJA. Proc. 9th Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science, eds Salzberg SL, Warnow T. Berlin, Heidelberg: Springer. pp. 375–89. doi: 10.1007/978-3-642-04241-6_31 |
[36] |
Huson DH. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14(1):68−73 doi: 10.1093/bioinformatics/14.1.68 |
[37] |
Vonholdt BM, Pollinger JP, Earl DA, Parker GF, Ostrander EA, et al. 2013. Identification of recent hybridization between gray wolves and domesticated dogs by SNP genotyping. Mammalian Genome 24(1):80−88 doi: 10.1007/s00335-012-9432-0 |
[38] |
Team R Core. 2021. R: a language and environment for statistical computing. www.R-project.org |
[39] |
Anderson EC, Thompson E. 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160(3):1217−29 doi: 10.1093/genetics/160.3.1217 |
[40] |
Wringe BF, Stanley RR, Jeffery NW, Anderson EC, Bradbury IR. 2017. HYBRIDDETECTIVE: a workflow and package to facilitate the detection of hybridization using genomic data in R. Molecular Ecology Resources 17(6):e275−e284 doi: 10.1111/1755-0998.12704 |
[41] |
GBIF Secretariat. 2023. GBIF Backbone Taxonomy. Checklist dataset. doi: /10.15468/39omei |
[42] |
Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5):541−45 doi: 10.1111/ecog.01132 |
[43] |
Duan RY, Kong XQ, Huang MY, Fan WY, Wang ZG. 2014. The predictive performance and stability of six species distribution models. PLoS One 9(11):e112764 doi: 10.1371/journal.pone.0112764 |
[44] |
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3−4):231−59 doi: 10.1016/j.ecolmodel.2005.03.026 |
[45] |
Qin A, Liu B, Guo Q, Bussmann RW, Ma F, et al. 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation 10:139−46 doi: 10.1016/j.gecco.2017.02.004 |
[46] |
Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, et al. 2005. Invited review: comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology 14(3):689−701 doi: 10.1111/j.1365-294X.2004.02410.x |
[47] |
Kusumi J, Tsumura Y, Yoshimaru H, Tachida H. 2002. Molecular evolution of nuclear genes in Cupressacea, a group of conifer trees. Molecular Biology and Evolution 19(5):736−47 doi: 10.1093/oxfordjournals.molbev.a004132 |
[48] |
Farjon A. 2001. World checklist and bibliography of conifers. 2nd Edition. Chicago: The University of Chicago Press. 316 pp. https://press.uchicago.edu/ucp/books/book/distributed/W/bo9857105.html |
[49] |
Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America 84(24):9054−58 doi: 10.1073/pnas.84.24.9054 |
[50] |
Drouin G, Daoud H, Xia J. 2008. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Molecular Phylogenetics and Evolution 49(3):827−31 doi: 10.1016/j.ympev.2008.09.009 |
[51] |
Kou YX, Shang HY, Mao KS, Li ZH, Rushforth K, et al. 2014. Nuclear and cytoplasmic DNA sequence data further illuminate the genetic composition of Leyland cypresses. Journal of the American Society for Horticultural Science 139(5):558−66 doi: 10.21273/JASHS.139.5.558 |
[52] |
Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M. 2008. Ecological consequences of genetic diversity. Ecology Letters 11(6):609−23 doi: 10.1111/j.1461-0248.2008.01179.x |
[53] |
Booy G, Hendriks RJJ, Smulders MJM, Van Groenendael JM, Vosman B. 2000. Genetic diversity and the survival of populations. Plant Biology 2(4):379−95 doi: 10.1055/s-2000-5958 |
[54] |
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, et al. 2017. Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science 22(11):961−75 doi: 10.1016/j.tplants.2017.08.011 |
[55] |
Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. 2020. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annual Review of Ecology, Evolution, and Systematics 51:245−69 doi: 10.1146/annurev-ecolsys-020720-042553 |