[1]

Chaffey N, Cholewa E, Regan S, Sundberg B. 2002. Secondary xylem development in Arabidopsis: a model for wood formation. Physiologia Plantarum 114:594−600

doi: 10.1034/j.1399-3054.2002.1140413.x
[2]

Du J, Miura E, Robischon M, Martinez C, Groover A. 2011. The Populus class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS One 6:e17458

doi: 10.1371/journal.pone.0017458
[3]

Savidge RA. 2023. Intrinsic regulation of diameter growth in woody plants. Forests 14:1065

doi: 10.3390/f14051065
[4]

Mazur E, Benková E, Friml J. 2016. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Science Reports 6:33754

doi: 10.1038/srep33754
[5]

Turley EK, Etchells JP. 2022. Laying it on thick: a study in secondary growth. Journal of Experimental Botany 73:665−79

doi: 10.1093/jxb/erab455
[6]

Bueno N, Cuesta C, Centeno ML, Ordás RJ, Alvarez JM. 2021. In vitro plant regeneration in conifers: the role of WOX and KNOX gene families. Genes 12:438

doi: 10.3390/genes12030438
[7]

Uddenberg D, Akhter S, Ramachandran P, Sundström JF, Carlsbecker A. 2015. Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology. Frontiers in Plant Science 6:970

doi: 10.3389/fpls.2015.00970
[8]

Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, et al. 2019. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nature Plants 5:1033−42

doi: 10.1038/s41477-019-0522-9
[9]

Rashotte AM, Poupart J, Waddell CS, Muday GK. 2003. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiology 133:761−72

doi: 10.1104/pp.103.022582
[10]

Ludwig-Müller J, Vertocnik A, Town CD. 2005. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. Journal of Experimental Botany 56:2095−105

doi: 10.1093/jxb/eri208
[11]

Strader LC, Monroe-Augustus M, Rogers KC, Lin GL, Bartel B. 2008. Arabidopsis iba response5 suppressors separate responses to various hormones. Genetics 180:2019−31

doi: 10.1534/genetics.108.091512
[12]

Wang T, Li P, Mu T, Dong G, Zheng C, et al. 2020. Overexpression of UGT74E2, an Arabidopsis IBA glycosyltransferase, enhances seed germination and modulates stress tolerance via ABA signaling in rice. International Journal of Molecular Science 21:7239

doi: 10.3390/ijms21197239
[13]

Zolman BK, Bartel B. 2004. An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proceedings of the National Academy of Sciences of the United States of America 101:1786−91

doi: 10.1073/pnas.0304368101
[14]

Damodaran S, Strader LC. 2019. Indole-3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science 10:851

doi: 10.3389/fpls.2019.00851
[15]

Yu Y, Meng N, Chen S, Zhang H, Liu Z, et al. 2022. Transcriptomic profiles of poplar (Populus simonii × P. nigra) cuttings during adventitious root formation. Frontiers in Genetics 13:968544

doi: 10.3389/fgene.2022.968544
[16]

Van de Poel B, Van Der Straeten D. 2014. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Frontiers in Plant Science 5:640

doi: 10.3389/fpls.2014.00640
[17]

Vanderstraeten L, Depaepe T, Bertrand S, Van Der Straeten D. 2019. The ethylene precursor ACC affects early vegetative development independently of ethylene signaling. Frontiers in Plant Science 10:1591

doi: 10.3389/fpls.2019.01591
[18]

Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJJ, Harren FJM, et al. 2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiology 133:517−27

doi: 10.1104/pp.103.022665
[19]

Stepanova AN, Yun J, Likhacheva AV, Alonso JM. 2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. The Plant Cell 19:2169−85

doi: 10.1105/tpc.107.052068
[20]

Poupin MJ, Greve M, Carmona V, Pinedo I. 2016. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN. Frontiers in Plant Science 7:492

doi: 10.3389/fpls.2016.00492
[21]

Zemlyanskaya EV, Omelyanchuk NA, Ubogoeva EV, Mironova VV. 2018. Deciphering auxin-ethylene crosstalk at a systems level. International Journal of Molecular Sciences 19:4060

doi: 10.3390/ijms19124060
[22]

Sundberg B, Little CHA, Riding RT, Sandberg G. 1987. Levels of endogenous indole-3-acetic acid in the vascular cambium region of Abies balsamea trees during the activity - rest - quiescence transition. Physiologia Plantarum 71:163−70

doi: 10.1111/j.1399-3054.1987.tb02862.x
[23]

Sundberg B, Little CHA. 1987. Effect of defoliation on tracheid production and the level of indole-3-acetic acid in Abies balsamea shoots. Physiologia Plantarum 71:430−35

doi: 10.1111/j.1399-3054.1987.tb02879.x
[24]

Little CHA, Sundberg B, Ericsson A. 1990. Induction of acropetal 14C-photosynthate transport and radial growth by indole-3-acetic acid in Pinus sylvestris shoots. Tree Physiology 6:177−89

doi: 10.1093/treephys/6.2.177
[25]

Savidge RA. 1988. Auxin and ethylene regulation of diameter growth in trees. Tree Physiology 4:401−14

doi: 10.1093/treephys/4.4.401
[26]

Savidge RA, Mutumba GMC, Heald JK, Wareing PF. 1983. Gas chromatography-mass spectroscopy identification of 1-aminocyclopropane-1-carboxylic acid in compressionwood vascular cambium of Pinus contorta Dougl. Plant Physiology 71:434−36

doi: 10.1104/pp.71.2.434
[27]

Eklund L, Little CHA. 1995. Interaction between indole-3-acetic acid and ethylene in the control of tracheid production in detached shoots of Abies balsamea. Tree Physiology 15:27−34

doi: 10.1093/treephys/15.1.27
[28]

Eklund L, Little CHA. 1996. Laterally applied ethrel causes local increases in radial growth and indole-3-acetic acid concentration in Abies balsamea shoots. Tree Physiology 16:509−13

doi: 10.1093/treephys/16.5.509
[29]

Eklund L, Little CHA. 1998. Ethylene evolution, radial growth and carbohydrate concentrations in Abies balsamea shoots ringed with ethrel. Tree Physiology 18:383−91

doi: 10.1093/treephys/18.6.383
[30]

Little CHA, Eklund L. 1999. Ethylene in relation to compression wood formation in Abies balsamea shoots. Trees 13:173−77

doi: 10.1007/PL00009749
[31]

Little CHA, Eklund L. 2000. Transport of [1-14C]-indole-3-acetic acid in Abies balsamea shoots ringed with ethrel. Trees 15:58−62

doi: 10.1007/s004680000075
[32]

Savidge RA. 1982. Regulation of seasonal cambial activity and tracheid differentiation in Pinus contorta Dougl. Thesis. University of Wales, UK.

[33]

Savidge RA. 1983. The role of plant hormones in higher plant cellular differentiation. ll. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. The Histochemical Journal 15:447−66

doi: 10.1007/BF01002699
[34]

Worrall JJ, Little CHA. 1986. An effect of gravity on bud-burst in balsam fir. Tree Physiology 1:47−52

doi: 10.1093/treephys/1.1.47
[35]

Little CHA, Lavigne MB. 2002. Gravimorphism in current-year shoots of Abies balsamea: involvement of compensatory growth, indole-3-acetic acid transport and compression wood formation. Tree Physiology 22:311−20

doi: 10.1093/treephys/22.5.311
[36]

O'Brien TP, Feder N, McCully ME. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:367−73

doi: 10.1007/BF01248568
[37]

Savidge RA, Wareing PF. 1981. Plant-growth regulators and the differentiation of vascular elements. In Xylem Cell Development, ed. Barnett JR. Tunbridge Wells, UK: Castle House Publications. pp. 192−235

[38]

Savidge RA. 2001. Intrinsic regulation of cambial growth. Journal of Plant Growth Regulation 20:52−77

doi: 10.1007/s003440010002
[39]

Rasband WS. 1997−2015. ImageJ. US National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij

[40]

Savidge RA. 2014. Cell biology of bordered-pit formation in balsam-fir trees. Botany 92:495−511

doi: 10.1139/cjb-2014-0030
[41]

Welch BL. 1951. On the comparison of several mean values: an alternative approach. Biometrika 38:330−36

doi: 10.1093/biomet/38.3-4.330
[42]

Midway S, Robertson M, Flinn S, Kaller M. 2020. Comparing multiple comparisons: practical guidance for choosing the best multiple comparisons test. PeerJ 8:e10387

doi: 10.7717/peerj.10387
[43]

Kijidani Y, Wu Z, Savidge RA. 2001. New insight into phytohormone regulation of wood formation in conifers. Phytomorphology 51:185−200

[44]

Savidge RA, Yuan X, Foerster H. 2023. Gišogenetic variation in white-spruce (Picea glauca (Moench) Voss) trees of Yukon Beringia, Canada. Forests 14:787

doi: 10.3390/f14040787
[45]

Savidge RA, Wareing PF. 1982. Apparent auxin production and transport during winter in the non-growing pine tree. Canadian Journal of Botany 60:681−91

doi: 10.1139/b82-090
[46]

Savidge RA, Wareing PF. 1981. A tracheid-differentiation factor from pine needles. Planta 153:395−404

doi: 10.1007/BF00394977
[47]

Savidge RA. 1994. The tracheid-differentiation factor of conifer needles. International Journal of Plant Science 155:272−90

doi: 10.1086/297167
[48]

Savidge RA, Barnett JR. 1993. Protoplasmic changes in cambial cells induced by a tracheid-differentiation factor from pine needles. Journal of Experimental Botany 44:395−405

doi: 10.1093/jxb/44.2.395
[49]

Savidge RA. 2007. ACC induction of xylogenesis in horseradish roots. Proceedings 33rd PGRSA Annual Meeting, 2006, Quebec City, Canada. pp. 60−65. www.researchgate.net/publication/311654362_ACC_induction_of_xylogenesis_in_horseradish_roots

[50]

Hook DD, Brown CL, Wetmore RH. 1972. Aeration in trees. Botanical Gazette 133:443−54

doi: 10.1086/336669
[51]

Laming PB. 1974. On intercellular spaces in the xylem ray parenchyma of Picea abies. Acta Botanica Neerlandica 23:217−23

doi: 10.1111/j.1438-8677.1974.tb00939.x
[52]

Kitin P, Fujii T, Abe H, Takata K. 2009. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Annals of Botany 103:1145−57

doi: 10.1093/aob/mcp050
[53]

Shimakura M. 1936. On the expansion of bast cells in conifers. The Botanical Magazine 50:318−23

doi: 10.15281/jplantres1887.50.318
[54]

Morgensen HL. 1968. Studies on the bark of the cork bark fir: Abies lasioearpa var. arizonica (merriam) lemmon. I. periderm ontogeny. Journal of the Arizona Academy of Science 5:36−40

doi: 10.2307/40022822
[55]

Golonowski WO. 1971. The anatomical structure of the common fir (Abies alba Mill.) bark. I. development of bark tissues. Acta Societatis Botanicorum Poloniae 40:149−81

doi: 10.5586/asbp.1971.010
[56]

Grozdits GA, Godkin SE, Keith CT. 1982. The periderms of three North American conifers. Wood Science and Technology 16:305−16

doi: 10.1007/BF00353159
[57]

Lev-Yadun S, Liphschitz N. 1989. Sites of first phellogen initiation in conifers. IAWA Journal 10:43−52

[58]

Xiao W, Molina D, Wunderling A, Ripper D, Vermeer JEM, et al. 2020. Pluripotent pericycle cells trigger different growth outputs by integrating developmental cues into distinct regulatory modules. Current Biology 30:4384−4398.e5

doi: 10.1016/j.cub.2020.08.053
[59]

Johns S, Hagihara T, Toyota M, Gilroy S. 2021. The fast and the furious: rapid long-range signaling in plants. Plant Physiology 185:694−706

doi: 10.1093/plphys/kiaa098
[60]

Moungsrimuangdee B, Iwanaga F, Yamanaka N, Kodani J, Yamamoto F. 2022. Effects of applied ethrel, jasmonic acid, and salicylic acid on the formation of traumatic resin ducts in the bark of Thujopsis dolabrata cuttings and xylem of Metasequoia glyptostroboides seedlings. Trees 36:793−801

doi: 10.1007/s00468-021-02250-4
[61]

Fahn A, Zamski E. 1970. The influence of pressure, wind, wounding and growth substances on the rate of resin duct formation in Pinus halepensis wood. Israel Journal of Botany 19:429−46

[62]

Evans DE. 2004. Aerenchyma formation. New Phytologist 161:35−49

doi: 10.1046/j.1469-8137.2003.00907.x
[63]

Namboodiri KK, Beck CB. 1968. A comparative study of the primary vascular system of conifers. 1. Genera with helical phyllotaxis. American Journal of Botany 55:447−57

doi: 10.1002/j.1537-2197.1968.tb07398.x
[64]

Fink S. 1983. The occurrence of adventitious and preventitious buds within the bark of some temperate and tropical trees. American Journal of Botany 70:532−42

doi: 10.1002/j.1537-2197.1983.tb07880.x