[1] |
Liu X, Liu W, Mei T, Ma H. 2016. A deep learning-based approach to progressive vehicle re-identification for urban surveillance. Computer Vision – ECCV 2016: 14 th European Conference Part II, Amsterdam, The Netherlands, October 11–14, 2016. Amsterdam, The Netherlands: Springer. pp. 869–84. doi: 10.1007/978-3-319-46475-6_53 |
[2] |
Liu H, Tian Y, Wang Y, Pang L, Huang T. 2016. Deep relative distance learning: Tell the difference between similar vehicles. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016. USA: IEEE. pp. 2167–75. doi: 10.1109/CVPR.2016.238 |
[3] |
Kazim E, Koshiyama AS. 2021. A high-level overview of AI ethics. Patterns 2(9):100314 doi: 10.1016/j.patter.2021.100314 |
[4] |
Department of Industry, Science and Resources. 2019. Australia's AI Ethics Principles. www.industry.gov.au/publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles (Accessed on March 4, 2023 |
[5] |
Yang HF, Cai J, Liu C, Ke R, Wang Y. 2023. Cooperative multi-camera vehicle tracking and traffic surveillance with edge artificial intelligence and representation learning. Transportation Research Part C: Emerging Technologies 148:103982 doi: 10.1016/j.trc.2022.103982 |
[6] |
Dietlmeier J, Antony J, McGuinness K, O'Connor NE. 2021. How important are faces for person re-identification? The 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021. USA: IEEE. pp. 6912–19. doi: 10.1109/ICPR48806.2021.9412340 |
[7] |
Ahmad S, Scarpellini G, Morerio P, Bue AD. 2022. Event-driven re-id: a new benchmark and method towards privacy-preserving person re-identification. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, 4–8 January 2022. USA: IEEE. pp. 459–68. doi: 10.1109/WACVW54805.2022.00052 |
[8] |
RichardWebster B, Hu B, Fieldhouse K, Hoogs A. 2022. Doppelgänger saliency: towards more ethical person re-identification. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022. USA: IEEE. pp. 2847–57. doi: 10.1109/CVPRW56347.2022.00322 |
[9] |
Rudin C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence 1:206−15 doi: 10.1038/s42256-019-0048-x |
[10] |
Wang Z, Tang L, Liu X, Yao Z, Yi S, et al. 2017. Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. Venice, Italy: IEEE. pp. 379–87. doi: 10.1109/ICCV.2017.49 |
[11] |
Zhang Y, Liu D, Zha ZJ. 2017. Improving triplet-wise training of convolutional neural network for vehicle re-identification. 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017. USA: IEEE. pp. 1386–91. doi: 10.1109/ICME.2017.8019491 |
[12] |
Hou J, Zeng H, Zhu J, Hou J, Chen J, et al. 2019. Deep quadruplet appearance learning for vehicle re-identification. IEEE Transactions on Vehicular Technology 68(9):8512−22 doi: 10.1109/TVT.2019.2927353 |
[13] |
Qian J, Pan M, Tong W, Law R, Wu EQ. 2023. URRNet: A unified relational reasoning network for vehicle re-identification. IEEE Transactions on Vehicular Technology 72(9):11156−68 doi: 10.1109/TVT.2023.3262983 |
[14] |
He Z, Zhao H, Wang J, Feng W. 2023. Multi-level progressive learning for unsupervised vehicle re-identification. IEEE Transactions on Vehicular Technology 72(4):4357−71 doi: 10.1109/TVT.2022.3228127 |
[15] |
Zhu W, Peng B. 2022. Manifold-based aggregation clustering for unsupervised vehicle re-identification. Knowledge-Based Systems 235:107624 doi: 10.1016/j.knosys.2021.107624 |
[16] |
Zhang H, Kuang Z, Cheng L, Liu Y, Ding X, et. al. 2024. AIVR-Net: attribute-based invariant visual representation learning for vehicle re-identification. Knowledge-Based Systems 289:111455 doi: 10.1016/j.knosys.2024.111455 |
[17] |
Wei XS, Zhang CL, Liu L, Shen C, Wu J. 2019. Coarse-to-fine: a RNN-based hierarchical attention model for vehicle re-identification. Computer Vision – ACCV 2018: 14 th Asian Conference on Computer Vision Part II, Perth, Australia, 2–6 December 2018. Perth, Australia: Springer. pp. 575–91. doi: 10.1007/978-3-030-20890-5_37 |
[18] |
He ST, Luo H, Wang PC, Wang F, Li H, et. al. 2021. TransReID: Transformer-based object re-identification. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. USA: IEEE. pp. 14993–5022. doi: 10.1109/ICCV48922.2021.01474 |
[19] |
Qian Y, Barthelemy J, Iqbal U, Perez P. 2022. V2ReID: Vision-outlooker-based vehicle re-identification. Sensors 22(22):8651 doi: 10.3390/s22228651 |
[20] |
Li H, Li C, Zheng A, Tang J, Luo B. 2022. MsKAT: Multi-scale knowledge-aware transformer for vehicle re-identification. IEEE Transactions on Intelligent Transportation Systems 23(10):19557−68 doi: 10.1109/TITS.2022.3166463 |
[21] |
Lu Z, Lin R, Hu H. 2023. MART: Mask-aware reasoning transformer for vehicle re-identification. IEEE Transactions on Intelligent Transportation Systems 24(2):1994−2009 doi: 10.1109/TITS.2022.3219593 |
[22] |
Huang F, Lv X, Zhang L. 2023. Coarse-to-fine sparse self-attention for vehicle re-identification. Knowledge-Based Systems 270:110526 doi: 10.1016/j.knosys.2023.110526 |
[23] |
Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, et al. 2019. A survey of methods for explaining black box models. ACM Computing Surveys 51(5):1−42 doi: 10.1145/3236009 |
[24] |
Ye M, Shen J, Lin G, Xiang T, Shao L, et al. 2022. Deep learning for person re-identification: a survey and outlook. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(6):2872−93 doi: 10.1109/TPAMI.2021.3054775 |
[25] |
Chen X, Liu X, Liu W, Zhang XP, Zhang Y, et. al. 2021. Explainable person re-identification with attribute-guided metric distillation. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. USA: IEEE. pp. 11813–22. doi: 10.1109/ICCV48922.2021.01160 |
[26] |
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, et. al. 2013. Intriguing properties of neural networks. arXiv preprint doi: 10.48550/arXiv.1312.6199 |
[27] |
Yang L, Luo P, Loy CC, Tang X. 2015. A large-scale car dataset for fine-grained categorization and verification. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June 2015. USA: IEEE. pp. 3973–81. doi: 10.1109/CVPR.2015.7299023 |
[28] |
Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A. 2010. The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88(2):303−38 doi: 10.1007/s11263-009-0275-4 |
[29] |
Yan K, Tian Y, Wang Y, Zeng W, Huang T. 2017. Exploiting multi-grain ranking constraints for precisely searching visually-similar vehicles. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. USA: IEEE. pp. 562–70. doi: 10.1109/ICCV.2017.68 |
[30] |
Guo H, Zhao C, Liu Z, Wang J, Lu H. 2018. Learning coarse-to-fine structured feature embedding for vehicle re-identification. Proceedings of the AAAI Conference on Artificial Intelligence 32(1):6853−60 doi: 10.1609/aaai.v32i1.12237 |
[31] |
Tang Z, Naphade M, Liu MY, Yang X, Birchfield S, et. al. 2019. CityFlow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. USA: IEEE. pp. 8797–806. doi: 10.1109/CVPR.2019.00900 |
[32] |
Lou Y, Bai Y, Liu J, Wang S, Duan L. 2019. VERI-Wild: A large dataset and a new method for vehicle re-identification in the wild. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019. USA: IEEE. pp. 3235–43. doi: 10.1109/CVPR.2019.00335 |
[33] |
Isola P, Zhu JY, Zhou T, Efros AA. 2017. Image-to-image translation with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. USA: IEEE. pp. 1125–34. https://doi.org/10.1109/CVPR.2017.632 |
[34] |
Wang M, Deng W. 2018. Deep visual domain adaptation: A survey. Neurocomputing 312:135−53 doi: 10.1016/j.neucom.2018.05.083 |
[35] |
Zhu JY, Park T, Isola P, Efros AA. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. USA: IEEE. pp. 2242–51. doi: 10.1109/ICCV.2017.244 |
[36] |
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, et. al. 2020. Generative adversarial networks. Communications of the ACM 63(11):139−144 doi: 10.1145/3422622 |
[37] |
Zhou Y, Shao L. 2017. Cross-view gan based vehicle generation for re-identification. Proc. British Machine Vision Conference, 2017. London UK. pp. 1–12. |
[38] |
Wang Q, Min W, Han Q, Liu Q, Zha C, et al. 2022. Inter-domain adaptation label for data augmentation in vehicle re-identification. IEEE Transactions on Multimedia 24:1031−41 doi: 10.1109/TMM.2021.3104141 |
[39] |
Zhou Z, Li Y, Li J, Yu K, Kou G, et al. 2023. GAN-Siamese network for cross-domain vehicle re-identification in intelligent transport systems. IEEE Transactions on Network Science and Engineering 10(5):2779−90 doi: 10.1109/TNSE.2022.3199919 |
[40] |
Luo H, Chen W, Xu X, Gu J, Zhang Y, et al. 2021. An empirical study of vehicle re-identification on the AI city challenge. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021. USA: IEEE. pp. 4095–102. doi: 10.1109/CVPRW53098.2021.00462 |
[41] |
Deng W, Zheng L, Ye Q, Kang G, Yang Y. 2018. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. USA: IEEE. pp. 994–1003. doi: 10.1109/CVPR.2018.00110 |
[42] |
Zhou T, Krähenbühl P, Aubry M, Huang Q, Efros AA. 2016. Learning dense correspondence via 3D-guided cycle consistency. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. USA: IEEE. pp. 117–26. doi: 10.1109/CVPR.2016.20 |
[43] |
Brislin RW. 1970. Back-translation for cross-cultural research. Journal of Cross-Cultural Psychology 1(3):185−216 doi: 10.1177/135910457000100301 |
[44] |
Kingma DP, Ba J. 2014. Adam: A method for stochastic optimization. arXiv Preprint doi: 10.48550/arXiv.1412.6980 |
[45] |
Qian Y, Barthélemy J, Du B, Shen J. 2024. Paying attention to vehicles: a systematic review on transformer-based vehicle re-identification. ACM Transactions on Multimedia Computing, Communications and Applications doi: 10.1145/3655623 |