[1]

Chadipiralla K, Gayathri P, Rajani V, Reddy PVB. 2020. Plant tissue culture and crop improvement. In Sustainable Agriculture in the Era of Climate Change, eds. Roychowdhury R, Choudhury S, Hasanuzzaman M, Srivastava S. Cham: Springer International Publishing. pp. 391–412. doi: 10.1007/978-3-030-45669-6_18

[2]

Mosoh DA, Prakash O, Khandel AK, Vendrame WA. 2024. Preserving Earth's flora in the 21st Century: Climate, Biodiversity, and Global Change Factors since the mid-1940s. Frontiers in Conservation Science 5:1383370

doi: 10.3389/fcosc.2024.1383370
[3]

Pe PPW, Naing AH, Soe MT, Kang H, Park KI, Kim CK. 2020. Establishment of meristem culture for virus-free and genetically stable production of the endangered plant Hosta capitata. Scientia Horticulturae 272:109591

doi: 10.1016/j.scienta.2020.109591
[4]

Vendrame WA, Holliday CP, Montello PM, Smith DR, Merkle SA. 2001. Cryopreservation of yellow-poplar and sweetgum embryogenic cultures. New Forests 21:283−92

doi: 10.1023/A:1012237606373
[5]

Neumann KH, Kumar A, Imani J. 2020. Plant cell and tissue culture – a tool in biotechnology: basics and application. Cham: Springer International Publishing. 459 pp. doi: 10.1007/978-3-030-49098-0

[6]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. 2024. Phytochemical analysis and enhanced production of alkaloids in non-dormant corm-derived callus of Gloriosa superba (L.) using plant growth regulators and abiotic elicitors. Plant Cell, Tissue and Organ Culture (PCTOC) 156:89

doi: 10.1007/s11240-023-02674-5
[7]

Shahzad A, Sharma S, Siddiqui SA. 2016. Biotechnological strategies for the conservation of medicinal and ornamental climbers. Cham, Switzerland: Springer International Publishing. 506 pp. doi: 10.1007/978-3-319-19288-8

[8]

Khandel AK, Gantait S, Verma SK. 2022. Optimization of growing conditions, substrate-types and their concentrations for acclimatization and post-acclimatization growth of in vitro-raised flame lily (Gloriosa superba L.) plantlets. Vegetos 35:228−36

doi: 10.1007/s42535-021-00297-9
[9]

Nalina L, Rajamani K, Shanmugasundaram KA, Boomiga M. 2022. Breeding and conservation of medicinal plants in India. In Medicinal and Aromatic Plants of India. Medicinal and Aromatic Plants of the World, eds. Máthé Á, Khan IA. Vol. 1. Cham: Springer International Publishing. pp. 201–36. doi: 10.1007/978-3-030-98701-5_7

[10]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. 2024. Standardizing in vitro callus induction and indirect organogenesis of Gloriosa superba L. leaf explants using exogenous phytohormones. Journal of Plant Biotechnology 51:237−52

doi: 10.5010/jpb.2024.51.023.237
[11]

Mishra T, Sharma P. 2020. A critical review of glory lily: a rare medicinal plant. World Journal of Pharmacy and Pharmaceutical Sciences 9:1123−33

[12]

Mahajan R, Billowaria P, Kapoor N. 2018. In vitro conservation strategies for Gloriosa superba L.: an endangered medicinal plant. In Biotechnological approaches for medicinal and aromatic plants: conservation, genetic improvement and utilization, ed. Kumar N. Singapore: Springer. pp. 489–501. doi: 10.1007/978-981-13-0535-1_22

[13]

Patel A, Desai BS, Chaudhari BN, Vashi JM. 2020. Genetic improvement in glory lily (Gloriosa superba L.): a review. International Journal of Chemical Studies 8:255−60

doi: 10.22271/chemi.2020.v8.i4d.9701
[14]

Yadav K, Groach R, Aggarwal A, Singh N. 2015. A reliable protocol for micropropagation of Gloriosa superba L. (colchicaceae). Asia-Pacific Journal of Molecular Biology and Biotechnology 23(1):242−51

[15]

Abdalla N, El-Ramady H, Seliem MK, El-Mahrouk ME, Taha N, et al. 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae 8:677

doi: 10.3390/horticulturae8080677
[16]

Smith RH, Burrows J, Kurten K. 1999. Challenges associated with micropropagation of Zephyranthes and Hippesatrum sp. (Amaryllidaceae). In Vitro Cellular & Developmental Biology - Plant 35:281−82

doi: 10.1007/s11627-999-0032-y
[17]

Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-la-Peña C. 2014. In vitro culture: an epigenetic challenge for plants. Plant Cell, Tissue and Organ Culture (PCTOC) 118:187−201

doi: 10.1007/s11240-014-0482-8
[18]

Haque SM, Ghosh B. 2018. An improved micropropagation protocol for the recalcitrant plant Capsicum – a study with ten cultivars of Capsicum spp. (C. annuum, C. chinense, and C. frutescens) collected from diverse geographical regions of India and Mexico. The Journal of Horticultural Science and Biotechnology 93:91−99

doi: 10.1080/14620316.2017.1345331
[19]

Sokolov RS, Atanassova BY, Iakimova ET. 2014. Physiological response of in vitro cultured MAGNOLIA SP. to nutrient medium composition. Journal of Horticultural Research 22:49−61

doi: 10.2478/johr-2014-0006
[20]

Teixeira da Silva JA, Cardoso JC, Dobránszki J, Zeng S. 2015. Dendrobium micropropagation: a review. Plant Cell Reports 34:671−704

doi: 10.1007/s00299-015-1754-4
[21]

Gurung R, Sharma S, Sharma S, Sharma V. 2021. Gloriosa superba: Its properties and in vitro production methods. International Journal of Botany Studies 6:74−77

[22]

Muruganandam C, Mohideen MK, Barathkumar TR. 2019. Studies on in-vitro propagation in glory lily (Gloriosa superba L.). Annals of Plant and Soil Research 21:177−84

[23]

Singh D, Mishra M, Yadav A. 2015. Study the Effect of Growth Regulators on Micropropagation of Gloriosa superba L. from Seeds and Their Acclimatization. Annual Research & Review in Biology 7:84−90

doi: 10.9734/ARRB/2015/12975
[24]

Sivakumar G, Krishnamurthy KV. 2004. In vitro organogenetic responses of Gloriosa superba. Russian Journal of Plant Physiology 51:713−21

doi: 10.1023/B:RUPP.0000040761.45363.75
[25]

Somani V, John C, Thengane R. 1989. In vitro propagation and corm formation in Gloriosa superba. Indian Journal of Experimental Biology 27:578−79

[26]

Sivakumar S, Siva G, Sathish S, Prem Kumar G, Vigneswaran M, et al. 2019. Influence of exogenous polyamines and plant growth regulators on high frequency in vitro mass propagation of Gloriosa superba L. and its colchicine content. Biocatalysis and Agricultural Biotechnology 18:101030

doi: 10.1016/j.bcab.2019.101030
[27]

Mosoh DA. 2024. Widely-targeted in silico and in vitro evaluation of veratrum alkaloid analogs as FAK inhibitors and dual targeting of FAK and Hh/SMO pathways for cancer therapy: A critical analysis. International Journal of Biological Macromolecules 281:136201

doi: 10.1016/j.ijbiomac.2024.136201
[28]

Sanyal R, Nandi S, Pandey S, Das T, Kaur P, et al. 2022. In vitro propagation and secondary metabolite production in Gloriosa superba L. Applied Microbiology and Biotechnology 106:5399−414

doi: 10.1007/s00253-022-12094-8
[29]

Ade R, Rai M. 2011. Multiple shoot formation in Gloriosa superba: A rare and endangered Indian medicinal plant. Nusantara Bioscience 3(2):68−72

doi: 10.13057/nusbiosci/n030203
[30]

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum 15:473−97

doi: 10.1111/j.1399-3054.1962.tb08052.x
[31]

Wang Y, Dong W, Saha MC, Udvardi MK, Kang Y. 2021. Improved node culture methods for rapid vegetative propagation of switchgrass (Panicum virgatum L.). BMC Plant Biology 21:128

doi: 10.1186/s12870-021-02903-z
[32]

Ahlawat J, Sehrawat AR, Choudhary R, Samarina L, Bandaralage JH, et al. 2020. Quantifying synergy of plant growth hormones, anti-oxidants, polyamines and silver nitrate for optimizing the micro propagation of Capparis decidua: an underutilised medicinal shrub. Nucleus 63:313−25

doi: 10.1007/s13237-020-00333-0
[33]

Lian X, Liu S, Sikandar A, Kang Z, Feng Y, Jiang L, Wang Y. 2023. The influence of 6-Benzylaminopurine (BAP) on yield responses and photosynthetic physiological indices of soybean. Kuwait Journal of Science 50:345−52

doi: 10.1016/j.kjs.2022.12.002
[34]

Murthy BNS, Murch SJ, Saxena PK. 1998. Thidiazuron: a potent regulator of in vitro plant morphogenesis. In vitro Cellular & Developmental Biology-Plant 34:267−75

doi: 10.1007/BF02822732
[35]

Amali P, Ramakrishnan M, Kingsley SJ, Ignacimuthu S. 2014. Direct regeneration potential of Sorghum bicolor (L.) Moench under the influence of plant growth regulators. Plant Cell Biotechnology and Molecular Biology 15:118−26

[36]

Ghauri EG, Afridi MS, Marwat GA, Rahman I, Akram M. 2013. Micropropagation of Stevia rebaudiana Bertoni through root explants. Pakistan Journal of Botany 45:1411−16

[37]

Mondal TK, Bhattacharya A, Sood A, Ahuja PS. 1998. Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) using Thidiazuron. Plant Growth Regulation 26:57−61

doi: 10.1023/A:1006019206264
[38]

Huetteman CA, Preece JE. 1993. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell, Tissue and Organ Culture (PCTOC) 33:105−19

doi: 10.1007/BF01983223
[39]

Gübbük H, Pekmezci M. 2004. In vitro propagation of some new banana types (Musa spp.). Turkish Journal of Agriculture and Forestry 28:355−61

[40]

Thomas TD. 2008. The role of activated charcoal in plant tissue culture. Biotechnology Advances 26:618−31

doi: 10.1016/j.biotechadv.2008.08.003
[41]

Wang PJ, Huang LC. 1976. Beneficial effects of activated charcoal on plant tissue and organ cultures. In Vitro 12:260−62

[42]

Abu-Romman SM, Al-Hadid KA, Arabiyyat AR. 2015. Kinetin is the most effective cytokinin on shoot multiplication from cucumber. Journal of Agricultural Science 7:159

doi: 10.5539/jas.v7n10p159
[43]

Naaz A, Shahzad A, Anis M. 2014. Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult Syzygium cumini L. — a multipurpose tree. Applied Biochemistry and Biotechnology 173:90−102

doi: 10.1007/s12010-014-0797-2
[44]

Singh AK, Sharma MK, Chaudhary R, Sengar RS. 2017. Effects of BAP and adenine sulphate on shoot regeneration from callus in potato (Solanum Tuberosum L.). Biotech Today: An International Journal of Biological Sciences 7:49−51

doi: 10.5958/2322-0996.2017.00006.0
[45]

Royani JI, Chotimah S, Utami RN, Fatma WS, Susiyanti, et al. 2021. Effect of Benzilaminopurine and Kinetin for shoot multiplication of Indigofera (Indigofera zollingeriana Miq.) by in vitro culture. IOP Conference Series: Earth and Environmental Science 637:012053

doi: 10.1088/1755-1315/637/1/012053
[46]

Cardoso JC, Teixeira da Silva JA. 2013. Gerbera micropropagation. Biotechnology Advances 31:1344−57

doi: 10.1016/j.biotechadv.2013.05.008
[47]

Trigiano RN, Gray DJ (eds.). 2010. Plant Tissue Culture, Development, and Biotechnology. 1st Edition. Boca Raton, FL, USA: CRC Press. 608 pp. doi: 10.1201/9781439896143

[48]

Vengadesan G, Pijut PM. 2009. In vitro propagation of northern red oak (Quercus rubra L.). In vitro Cellular & Developmental Biology-Plant 45:474−82

doi: 10.1007/s11627-008-9182-6
[49]

Kim MS, Schumann CM, Klopfenstein NB. 1997. Effects of thidiazuron and benzyladenine on axillary shoot proliferation of three green ash (Fraxinus pennsylvanica Marsh.) clones. Plant Cell, Tissue and Organ Culture (PCTOC) 48:45−52

doi: 10.1023/A:1005856720650
[50]

Satish L, Ceasar SA, Shilpha J, Rency AS, Rathinapriya P, et al. 2015. Direct plant regeneration from in vitro-derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cellular & Developmental Biology - Plant 51:192−200

doi: 10.1007/s11627-015-9672-2
[51]

Fujita H, Kawaguchi M. 2011. Strategy for shoot meristem proliferation in plants. Plant Signaling & Behavior 6:1851−54

doi: 10.4161/psb.6.11.17656
[52]

Ezeibekwe I, Ezenwaka C, Mbagwu F, Unamba C. 2009. Effects of combination of different levels of Auxin (NAA) and Cytokinin (BAP) on in vitro propagation of Dioscorea rotundata L. (White Yam). Journal of Molecular Genetics 1:18−22

doi: 10.3923/jmolgene.2009.18.22
[53]

Singh N, Meena MK, Patni V. 2011. Effect of plant growth regulators, explants type and efficient plantlet regeneration protocol through callus induction in Naringi crenulata (Roxb.) Nicolson and its biochemical investigation. African Journal of Biotechnology 10:17769−777

doi: 10.5897/AJB11.1158
[54]

Imtiaz M, Khattak AM, Ara N, Iqbal A, Rahman H. 2014. Micropropagation of Jartorpha curcas L. through shoot tip explants using different concentrations of phytohormones. The Journal of Animal & Plant Sciences 24:229−33

[55]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. 2024. Overcoming dual seed dormancy and enhancing in vitro seedling development of Gloriosa superba (L.) with a targeted sterilization approach and plant growth regulator synergy. Tropical Plants 3:e031

doi: 10.48130/tp-0024-0033
[56]

Chatterjee T, Ghosh B. 2015. An efficient method of in vitro propagation of Gloriosa superba L. - an endangered medicinal plant. Plant Science Research 37:18−23

[57]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. 2023. Effects of sterilization methods and plant growth regulators on in vitro regeneration and tuberization in Gloriosa superba (L.). In Vitro Cellular & Developmental Biology - Plant 59:792−807

doi: 10.1007/s11627-023-10387-9
[58]

Hassan AKMS, Roy SK. 2005. Micropropagation of Gloriosa superba L. through high frequency shoot proliferation. Plant Tissue Culture & Biotechnology 15(1):67−74

[59]

Hoang NN, Kitaya Y, Shibuya T, Endo R. 2020. Effects of supporting materials in in vitro acclimatization stage on ex vitro growth of wasabi plants. Scientia Horticulturae 261:109042

doi: 10.1016/j.scienta.2019.109042
[60]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. 2024. Optimizing callus induction and indirect organogenesis in non-dormant corm explants of Gloriosa superba (L.) via media priming. Frontiers in Horticulture 3:1378098

doi: 10.3389/fhort.2024.1378098
[61]

Teixeira da Silva JA, Hossain MM, Sharma M, Dobránszki J, Cardoso JC, et al. 2017. Acclimatization of in vitro-derived Dendrobium. Horticultural Plant Journal 3:110−24

doi: 10.1016/j.hpj.2017.07.009