[1] |
Sun B, Loughnan T. 2024. Consequence analysis of vapour cloud explosion from the release of high-pressure hydrogen storage. International Journal of Hydrogen Energy 80:1137−50 doi: 10.1016/j.ijhydene.2024.07.207 |
[2] |
Johnson DM, Allason D, Cronin PM. 2024. Large scale experimental research of VCEs–A summary from one viewpoint. Journal of Loss Prevention in the Process Industries 89:105287 doi: 10.1016/j.jlp.2024.105287 |
[3] |
Salzano E. 2023. The critical mass for the unconfined vapour cloud explosion of compressed and liquid hydrogen. The Canadian Journal of Chemical Engineering 101(10):5460−67 doi: 10.1002/cjce.25008 |
[4] |
Shojaee Barjoee S, Azizi M, Kouhkan M, Alipourfard I, Bayat A, et al. 2023. The Impacts and Analysis of Individual and Social Risks of the Stochastic Emission of Benzene from Floating-Roof Tanks Using Response Surface Analysis and MPACT Model. Archives of Environmental Contamination and Toxicology 84(3):347−67 doi: 10.1007/s00244-023-00990-7 |
[5] |
Malik DR, Lowry WB, Vivanco E, Thomas JK. 2023. Very lean hydrogen vapor cloud explosion testing. Process Safety Progress 42(2):242−51 doi: 10.1002/prs.12459 |
[6] |
Abg Shamsuddin DSN, Mohd Fekeri AF, Muchtar A, Khan F, Khor BC, et al. 2023. Computational fluid dynamics modelling approaches of gas explosion in the chemical process industry: A review. Process Safety and Environmental Protection 170:112−38 doi: 10.1016/j.psep.2022.11.090 |
[7] |
Hu Q, Zhang X, Hao H. 2023. A review of hydrogen-air cloud explosions: The fundamentals, overpressure prediction methods, and influencing factors. International Journal of Hydrogen Energy 48(36):13705−30 doi: 10.1016/j.ijhydene.2022.11.302 |
[8] |
Wang Y, Li J, Hao H. 2022. A state-of-the-art review of experimental and numerical studies on BLEVE overpressure prediction. Journal of Loss Prevention in the Process Industries 80:104920 doi: 10.1016/j.jlp.2022.104920 |
[9] |
Sajid Z, Khan MK, Rahnama A, Moghaddam FS, Vardhan K, et al. 2021. Computational Fluid Dynamics (CFD) modeling and analysis of Hydrocarbon Vapor Cloud Explosions (VCEs) in amuay refinery and jaipur plant using FLACS. Processes 9(6):960 doi: 10.3390/pr9060960 |
[10] |
Shi Y, Xie C, Li Z, Ding Y. 2021. A quantitative correlation of evaluating the flame speed for the BST method in vapor cloud explosions. Journal of Loss Prevention in the Process Industries 73:104622 doi: 10.1016/j.jlp.2021.104622 |
[11] |
Brunoro Ahumada C, Papadakis-Wood FI, Krishnan P, Yuan S, Quddus N, et al. 2020. Comparison of explosion models for detonation onset estimation in large-scale unconfined vapor clouds. Journal of Loss Prevention in the Process Industries 66:104165 doi: 10.1016/j.jlp.2020.104165 |
[12] |
Sharma RK. 2020. A violent, episodic vapour cloud explosion assessment: Deflagration-to-detonation transition. Journal of Loss Prevention in the Process Industries 65:104086 doi: 10.1016/j.jlp.2020.104086 |
[13] |
Wang K, Qian X, He Y, Shi T, Zhang X. 2020. Failure analysis integrated with prediction model for LNG transport trailer and thermal hazards induced by an accidental VCE: A case study. Engineering Failure Analysis 108:104350 doi: 10.1016/j.engfailanal.2019.104350 |
[14] |
Muhammad Niazi U, Shakir Nasif M, Muhammad M, Khan F. 2020. Investigating vapour cloud explosion dynamic fatality risk on offshore platforms by using a grid-based framework. Processes 8(6):685 doi: 10.3390/pr8060685 |
[15] |
Oran ES, Chamberlain G, Pekalski A. 2020. Mechanisms and occurrence of detonations in vapor cloud explosions. Progress in Energy and Combustion Science 77:100804 doi: 10.1016/j.pecs.2019.100804 |
[16] |
Gill J, Atkinson G, Cowpe E, Phylaktou H, Andrews G. 2020. Experimental investigation of potential confined ignition sources for vapour cloud explosions. Process Safety and Environmental Protection 135:187−206 doi: 10.1016/j.psep.2019.12.026 |
[17] |
Alexeev SG, Poluyan LV, Gur'ev ES, Barbin NM. 2018. Methods of predicting vapor cloud explosions in enclosed spaces. Coke and Chemistry 61(8):312−17 doi: 10.3103/S1068364X18080021 |
[18] |
Li J, Hao H. 2018. Far-field pressure prediction of a vented gas explosion from storage tanks by using new CFD simulation guidance. Process Safety and Environmental Protection 119:360−78 doi: 10.1016/j.psep.2018.08.004 |
[19] |
Wesevich J, Hassig P, Nikodym L, Nasri V, Mould J. 2017. Accounting for channeling and shielding effects for vapor cloud explosions. Journal of Loss Prevention in the Process Industries 50:205−20 doi: 10.1016/j.jlp.2017.09.015 |
[20] |
Çetinyokuş S. 2023. Consequence analysis in industrial organizations containing H2S gas through accident scenarios based on chemical source selection. Process Safety Progress 42(3):469−80 doi: 10.1002/prs.12453 |
[21] |
Changphuek S, Chetiyanukornkul T, Boongla Y. 2024. Simulation analysis of hazardous chemicals released from the furniture plant using ALOHA software. Environmental Monitoring and Assessment 196:207 doi: 10.1007/s10661-024-12322-w |
[22] |
Chehrazi D, Davami AH, Kazemi R, Yengejeh RJ. 2024. Comparison of numerical calculations and ALOHA modeling in consequence assessment of chlorine gas emissions from ethylene dichloride reactors. Environmental Monitoring and Assessment 196(6):553 doi: 10.1007/s10661-024-12694-z |
[23] |
Besiktas R, Baltaci H, Akkoyunlu BO. 2024. Simulation of the jet fire using atmospheric dispersion modeling (ALOHA): a case study of natural gas pipeline in Istanbul, Türkiye. Atmosphere 15(4):456 doi: 10.3390/atmos15040456 |
[24] |
Çetİnyokuş S, Pamuk E. 2023. Consequence Analysis of An Industrial Accident at a Fuel Station. Gazi University Journal of Science Part A: Engineering and Innovation 10(4):378−91 doi: 10.54287/gujsa.1328619 |
[25] |
Barjoee SS, Elmi MR, Varaoon VT, Keykhosravi SS, Karimi F. 2022. Hazards of toluene storage tanks in a petrochemical plant: Modeling effects, consequence analysis, and comparison of two modeling programs. Environmental Science and Pollution Research 29(3):4587−615 doi: 10.1007/s11356-021-15864-5 |
[26] |
Shojaee Barjoee S, Dashtian AH, Keykhosravi SS, Abbasi Saryazdi MJ, Afrough MJ. 2021. Modeling the environmental, health, and safety aspects of xylene isomer emission from storage tanks in petrochemical industries, Iran. Environmental Monitoring and Assessment 193(12):783 doi: 10.1007/s10661-021-09569-y |
[27] |
Barjoee S, Nikbakht M, Malverdi E, Abadi ZM, Naghdi MR. 2021. Modeling the consequences of benzene leakage from tank using ALOHA in tar refining industrial of Kerman, Iran. Pollution 7(1):217−30 doi: 10.22059/poll.2020.309283.887 |
[28] |
Rashidi S, Varshosaz K. 2023. Modeling and evaluation of the environmental consequences of fire in atmospheric storage tanks using PHAST software. Advances in Environmental Technology 9(2):153−64 |
[29] |
HABAS Community. 2023. HABAS Community Official Documents. https://ttr-cms.ttrbilisim.com/images/uploads/F300/bb2377f9-543c-497b-87a0-2647a1e3e829_Hidrojen-Gaz-GBF10.pdf |
[30] |
Cui S, Zhu G, He L, Wang X, Zhang X. 2023. Analysis of the fire hazard and leakage explosion simulation of hydrogen fuel cell vehicles. Thermal Science and Engineering Progress 41:101754 doi: 10.1016/j.tsep.2023.101754 |
[31] |
Casal J. 2018. Fire accidents. In Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants. Amsterdam: Elsevier. pp. 75−150. doi: 10.1016/b978-0-444-63883-0.00003-4 |
[32] |
Kurum M, Coskum MV. 2023. 5-Day Forecast (with Map). www.mgm.gov.tr/tahmin/turkiye.aspx |
[33] |
Pierorazio AJ, Thomas JK, Baker QA, Ketchum DE. 2005. An update to the Baker–Strehlow–Tang vapor cloud explosion prediction methodology flame speed table. Process Safety Progress 24(1):59−65 doi: 10.1002/prs.10048 |
[34] |
Jones R, Lehr W, Simecek-Beatty D, Reynolds M. 2013. ALOHA® (Areal Locations of Hazardous Atmospheres) 5.4.4. Technical Documentation. U.S. Dept. of Commerce, NOAA. Seattle, Washington: Emergency Response Division, NOAA |
[35] |
Melton TA, Marx JD. 2009. Estimating flame speeds for use with the BST blast curves. Process Safety Progress 28(1):5−10 doi: 10.1002/prs.10281 |
[36] |
Lobato J, Canizares P, Rodrigo M, Saez C, Linares J. 2006. A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2. Inter national Journal of Hydrogen Energy 31(12):1780−90 doi: 10.1016/j.ijhydene.2006.01.006 |
[37] |
Franz G. 2021. Plasma enhanced chemical vapor deposition of organic polymers. Processes 9(6):980 doi: 10.3390/pr9060980 |
[38] |
Mousavi J, Parvini M. 2016. A sensitivity analysis of parameters affecting the hydrogen release and dispersion using ANOVA method. International Journal of Hydrogen Energy 41(9):5188−201 doi: 10.1016/j.ijhydene.2016.01.042 |
[39] |
Rosa AC, de Souza IT, Terra A, Hammad AW, Di Gregório LT, et al. 2021. Quantitative risk analysis applied to refrigeration's industry using computational modeling. Results in Engineering 9:100202 doi: 10.1016/j.rineng.2021.100202 |
[40] |
Tahmid M, Dey S, Syeda SR. 2020. Mapping human vulnerability and risk due to chemical accidents. Journal of Loss Prevention in the Process Industries 68:104289 doi: 10.1016/j.jlp.2020.104289 |
[41] |
Skjold T, Hisken H, Lakshmipathy S, Atanga G, Bernard L, et al. 2019. Vented hydrogen deflagrations in containers: Effect of congestion for homogeneous and inhomogeneous mixtures. International Journal of Hydrogen Energy 44(17):8819−32 doi: 10.1016/j.ijhydene.2018.10.010 |
[42] |
Holborn PG, Battersby P, Ingram JM, Averill AF, Nolan PF. 2013. Estimating the effect of water fog and nitrogen dilution upon the burning velocity of hydrogen deflagrations from experimental test data. International Journal of Hydrogen Energy 38(16):6882−95 doi: 10.1016/j.ijhydene.2013.03.063 |