[1] |
Sen T, Samanta SK. 2015. Medicinal plants, human health and biodiversity: a broad review. In Biotechnological Applications of Biodiversity. Advances in Biochemical Engineering/Biotechnology, ed. Mukherjee J. Berlin, Heidelberg: Springer. pp. 59−110. doi: 10.1007/10_2014_273 |
[2] |
Benarba B, Pandiella A. 2020. Medicinal plants as sources of active molecules against COVID-19. Frontiers in Pharmacology 11:1189 doi: 10.3389/fphar.2020.01189 |
[3] |
Sun Y, Fernie AR. 2024. Plant secondary metabolism in a fluctuating world: climate change perspectives. Trends in Plant Science 29:560−71 doi: 10.1016/j.tplants.2023.11.008 |
[4] |
Leisner CP, Potnis N, Sanz-Saez A. 2023. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. Plant, Cell & Environment 46:2946−63 doi: 10.1111/pce.14532 |
[5] |
Maurel C, Nacry P. 2020. Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants 6:744−49 doi: 10.1038/s41477-020-0684-5 |
[6] |
Mi P, Yuan F, Guo J, Han G, Wang B. 2021. Salt glands play a pivotal role in the salt resistance of four recretohalophyte Limonium Mill. species. Plant Biology 23:1063−73 doi: 10.1111/plb.13284 |
[7] |
Venkataraman G, Shabala S, Véry AA, Hariharan GN, Somasundaram S, et al. 2021. To exclude or to accumulate? Revealing the role of the sodium HKT1;5 transporter in plant adaptive responses to varying soil salinity. Plant Physiology and Biochemistry 169:333−42 doi: 10.1016/j.plaphy.2021.11.030 |
[8] |
Ghosh S, Adhikari S, Adhikari A, Hossain Z. 2022. Contribution of plant miRNAome studies towards understanding heavy metal stress responses: Current status and future perspectives. Environmental and Experimental Botany 194:104705 doi: 10.1016/j.envexpbot.2021.104705 |
[9] |
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. 2024. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. Plant Biotechnology Journal 22:2641−59 doi: 10.1111/pbi.14379 |
[10] |
Li H, La S, Zhang X, Gao L, Tian Y. 2021. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME Journal 15:2865−82 doi: 10.1038/s41396-021-00974-2 |
[11] |
Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, et al. 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Frontiers in Microbiology 7:906 doi: 10.3389/fmicb.2016.00906 |
[12] |
Wu W, Chen W, Liu S, Wu J, Zhu Y, et al. 2021. Beneficial relationships between endophytic bacteria and medicinal plants. Frontiers in Plant Science 12:646146 doi: 10.3389/fpls.2021.646146 |
[13] |
Bai B, Liu W, Qiu X, Zhang J, Zhang J, et al. 2022. The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology 64:230−43 doi: 10.1111/jipb.13226 |
[14] |
Xun W, Shao J, Shen Q, Zhang R. 2021. Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Computational and Structural Biotechnology Journal 19:5487−93 doi: 10.1016/j.csbj.2021.09.035 |
[15] |
Hartman K, Tringe SG. 2019. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochemical Journal 476:2705−24 doi: 10.1042/BCJ20180615 |
[16] |
Yan N, Marschner P, Cao W, Zuo C, Qin W. 2015. Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research 3:316−23 doi: 10.1016/j.iswcr.2015.11.003 |
[17] |
Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, et al. 2021. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10:1551 doi: 10.3390/cells10061551 |
[18] |
Quiroga G, Castagneyrol B, Abdala-Roberts L, Moreira X. 2024. A meta‐analysis of the effects of climate change‐related abiotic factors on aboveground and belowground plant‐associated microbes. Oikos 2024:e10411 doi: 10.1111/oik.10411 |
[19] |
Signorini M, Midolo G, Cesco S, Mimmo T, Borruso L. 2023. A matter of metals: copper but not cadmium affects the microbial alpha-diversity of soils and sediments − a meta-analysis. Microbial Ecology 86:1071−81 doi: 10.1007/s00248-022-02115-4 |
[20] |
He C, Wang W, Hou J. 2019. Plant growth and soil microbial impacts of enhancing Licorice with inoculating dark septate endophytes under drought stress. Frontiers in Microbiology 10:2277 doi: 10.3389/fmicb.2019.02277 |
[21] |
Wang H, Wang Y, Kang C, Wang S, Zhang Y, et al. 2022. Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Frontiers in Plant Science 13:1032480 doi: 10.3389/fpls.2022.1032480 |
[22] |
Qian F, Huang X, Su X, Bao Y. 2022. Responses of microbial communities and metabolic profiles to the rhizosphere of Tamarix ramosissima in soils contaminated by multiple heavy metals. Journal of Hazardous Materials 438:129469 doi: 10.1016/j.jhazmat.2022.129469 |
[23] |
Yang H, Hu J, Long X, Liu Z, Rengel Z. 2016. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Scientific Reports 6:20687 doi: 10.1038/srep20687 |
[24] |
Xia F, Hao H, Qi Y, Bai H, Li H, et al. 2023. Effect of salt stress on microbiome structure and diversity in chamomile (Matricaria chamomilla L. ) rhizosphere soil. Agronomy 13:1444 doi: 10.3390/agronomy13061444 |
[25] |
Yuan Y, Brunel C, van Kleunen M, Li J, Jin Z. 2019. Salinity-induced changes in the rhizosphere microbiome improve salt tolerance of Hibiscus hamabo. Plant and Soil 443:525−37 doi: 10.1007/s11104-019-04258-9 |
[26] |
Su J, Wang Y, Bai M, Peng T, Li H, et al. 2023. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'. Microbiome 11:61 doi: 10.1186/s40168-023-01504-2 |
[27] |
Liu S, Gao J, Wang S, Li W, Wang A. 2023. Community differentiation of rhizosphere microorganisms and their responses to environmental factors at different development stages of medicinal plant Glehnia littoralis. PeerJ 11:e14988 doi: 10.7717/peerj.14988 |
[28] |
Li Y, Zou N, Liang X, Zhou X, Guo S, et al. 2023. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. Frontiers in Microbiology 13:1070817 doi: 10.3389/fmicb.2022.1070817 |
[29] |
Sun R, Zhang W, Liu Y, Yun W, Luo B, et al. 2022. Changes in phosphorus mobilization and community assembly of bacterial and fungal communities in rice rhizosphere under phosphate deficiency. Frontiers in Microbiology 13:953340 doi: 10.3389/fmicb.2022.953340 |
[30] |
Liu Y, Li Y, Luo W, Liu S, Chen W, et al. 2020. Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages. Plant and Soil 456:61−79 doi: 10.1007/s11104-020-04692-0 |
[31] |
Sun Y, Guo J, Ruan Y, Zhang T, Fernie AR, et al. 2022. The recruitment of specific rhizospheric bacteria facilitates Stevia rebaudiana salvation under nitrogen and/or water deficit stresses. Industrial Crops and Products 187:115434 doi: 10.1016/j.indcrop.2022.115434 |
[32] |
Obata T, Fernie AR. 2012. The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences 69:3225−43 doi: 10.1007/s00018-012-1091-5 |
[33] |
Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, et al. 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal 77:367−79 doi: 10.1111/tpj.12388 |
[34] |
Zhang W, Xia K, Feng Z, Qin Y, Zhou Y, et al. 2024. Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. Plant Physiology and Biochemistry 208:108478 doi: 10.1016/j.plaphy.2024.108478 |
[35] |
Sun X, Zhang L, Pei J, Huang LF. 2020. Regulatory relationship between quality variation and environment of Cistanche deserticola in three ecotypes based on soil microbiome analysis. Scientific Reports 10:6662 doi: 10.1038/s41598-020-63607-2 |
[36] |
Parasar BJ, Sharma I, Agarwala N. 2024. Root exudation drives abiotic stress tolerance in plants by recruiting beneficial microbes. Applied Soil Ecology 198:105351 doi: 10.1016/j.apsoil.2024.105351 |
[37] |
Chai YN, Schachtman DP. 2022. Root exudates impact plant performance under abiotic stress. Trends in Plant Science 27:80−91 doi: 10.1016/j.tplants.2021.08.003 |
[38] |
Pan Y, Kang P, Tan M, Hu J, Zhang Y, et al. 2022. Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategists bacterial community under salt stress. Frontiers in Plant Science 13:997292 doi: 10.3389/fpls.2022.997292 |
[39] |
Xiong YW, Li XW, Wang TT, Gong Y, Zhang CM, et al. 2020. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicology and Environmental Safety 194:110374 doi: 10.1016/j.ecoenv.2020.110374 |
[40] |
Jiang Y, Zhang Y, Liu Y, Zhang J, Jiang M, et al. 2024. Plant growth-promoting rhizobacteria are key to promoting the growth and furanocoumarin synthesis of Angelica dahurica var. formosana under low-nitrogen conditions. Journal of Agricultural and Food Chemistry 72:6964−78 doi: 10.1021/acs.jafc.3c09655 |
[41] |
Xie H, Chen Z, Feng X, Wang M, Luo Y, et al. 2022. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly. Science of the Total Environment 837:155801 doi: 10.1016/j.scitotenv.2022.155801 |
[42] |
Sun Y, Guo J, Alejandro Jose Mur L, Xu X, Chen H, et al. 2024. Nitrogen starvation modulates the sensitivity of rhizobacterial community to drought stress in Stevia rebaudiana. Journal of Environmental Management 354:120486 doi: 10.1016/j.jenvman.2024.120486 |
[43] |
Zhang X, Zhang G, Yan Q, Ahmad B, Pei J, et al. 2024. Quality variation and salt-alkali-tolerance mechanism of Cynomorium songaricum: Interacting from microbiome-transcriptome-metabolome. Science of the Total Environment 919:170801 doi: 10.1016/j.scitotenv.2024.170801 |
[44] |
Liang Y, Wei G, Ning K, Li M, Zhang G, et al. 2021. Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosula. Plant Physiology and Biochemistry 165:19−35 doi: 10.1016/j.plaphy.2021.05.004 |
[45] |
Liang Y, Wei G, Ning K, Zhang G, Liu Y, et al. 2021. Contents of lobetyolin, syringin, and atractylolide III in Codonopsis pilosula are related to dynamic changes of endophytes under drought stress. Chinese Medicine 16:122 doi: 10.1186/s13020-021-00533-z |
[46] |
Yue H, Zhao L, Yang D, Zhang M, Wu J, et al. 2022. Comparative analysis of the endophytic bacterial diversity of Populus euphratica oliv. in environments of different salinity intensities. Microbiology Spectrum 10:e00500-22 doi: 10.1128/spectrum.00500-22 |
[47] |
Ma J, Chen D, Xu Y, Liu Y, Liu L, et al. 2024. Effects of different heavy metal stressors on the endophytic community composition and diversity of Symphytum officinale. Microorganisms 12:477 doi: 10.3390/microorganisms12030477 |
[48] |
Wu Y, Ma L, Zhang X, Topalović O, Liu Q, et al. 2020. A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil. Plant and Soil 455:257−70 doi: 10.1007/s11104-020-04684-0 |
[49] |
Zhang S, Jiang Q, Liu X, Liu L, Ding W. 2020. Plant growth promoting rhizobacteria alleviate aluminum toxicity and ginger bacterial wilt in acidic continuous cropping soil. Frontiers in Microbiology 11:569512 doi: 10.3389/fmicb.2020.569512 |
[50] |
Luo J, Tao Q, Wu K, Li J, Qian J, et al. 2017. Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Applied Microbiology and Biotechnology 101:7961−76 doi: 10.1007/s00253-017-8469-0 |
[51] |
Liu H, Brettell LE, Qiu Z, Singh BK. 2020. Microbiome-mediated stress resistance in plants. Trends in Plant Science 25:733−43 doi: 10.1016/j.tplants.2020.03.014 |
[52] |
Lata R, Chowdhury S, Gond SK, White Jr JF. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology 66:268−76 doi: 10.1111/lam.12855 |
[53] |
Munir N, Hanif M, Abideen Z, Sohail M, El-Keblawy A, et al. 2022. Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy 12:2069 doi: 10.3390/agronomy12092069 |
[54] |
Xie W, Hao Z, Zhou J, Fu W, Guo L, et al. 2023. Integrated transcriptomics and metabolomics reveal specific phenolic and flavonoid accumulation in licorice (Glycyrrhiza uralensis Fisch. ) induced by arbuscular mycorrhiza symbiosis under drought stress. Plant Physiology and Biochemistry 205:108173 doi: 10.1016/j.plaphy.2023.108173 |
[55] |
Amiri R, Nikbakht A, Etemadi N. 2015. Alleviation of drought stress on rose geranium [ Pelargonium graveolens (L.) Herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation. Scientia Horticulturae 197:373−80 doi: 10.1016/j.scienta.2015.09.062 |
[56] |
Wang Y, Gao X, Wu Q, Ji D, Cai F, et al. 2020. Influences of arbuscular myrorrhizal fungi on plant growth and tea quality of fuding dabaicha seedlings under different water conditions. Journal of Tea Science 40:588−96 doi: 10.3969/j.issn.1000-369X.2020.05.003 |
[57] |
Wu HH, Zou YN, Rahman MM, Ni QD, Wu QS. 2017. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports 7:42389 doi: 10.1038/srep42389 |
[58] |
Begum N, Akhtar K, Ahanger MA, Iqbal M, Wang P, et al. 2021. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environmental Science and Pollution Research 28:45276−95 doi: 10.1007/s11356-021-13755-3 |
[59] |
Yan Q, Li X, Xiao X, Chen J, Liu J, et al. 2022. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses. Ecology and Evolution 12:e9091 doi: 10.1002/ece3.9091 |
[60] |
Al-Arjani ABF, Hashem A, Abd Allah EF. 2020. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi Journal of Biological Sciences 27:380−94 doi: 10.1016/j.sjbs.2019.10.008 |
[61] |
Liu CY, Zhang F, Zhang DJ, Srivastava A, Wu QS, et al. 2018. Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Scientific Reports 8:1978 doi: 10.1038/s41598-018-20456-4 |
[62] |
Zhang F, Wang P, Zou YN, Wu QS, Kuča K. 2019. Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science 65:1316−30 doi: 10.1080/03650340.2018.1563780 |
[63] |
Xie W, Hao Z, Zhou X, Jiang X, Xu L, et al. 2018. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28:285−300 doi: 10.1007/s00572-018-0827-y |
[64] |
He C, Han T, Tan L, Li X. 2022. Effects of dark septate endophytes on the performance and soil microbia of Lycium ruthenicum under drought stress. Frontiers in Plant Science 13:898378 doi: 10.3389/fpls.2022.898378 |
[65] |
He C, Zeng Q, Chen Y, Chen C, Wang W, et al. 2021. Colonization by dark septate endophytes improves the growth and rhizosphere soil microbiome of licorice plants under different water treatments. Applied Soil Ecology 166:103993 doi: 10.1016/j.apsoil.2021.103993 |
[66] |
Ahmed B, Shahid M, Syed A, Rajput VD, Elgorban AM, et al. 2021. Drought tolerant Enterobacter sp./Leclercia adecarboxylata secretes indole-3-acetic acid and other biomolecules and enhances the biological attributes of Vigna radiata (L.) R. Wilczek in water deficit conditions. Biology 10:1149 doi: 10.3390/biology10111149 |
[67] |
He C, Liu C, Liu H, Wang W, Hou J, et al. 2022. Dual inoculation of dark septate endophytes and Trichoderma viride drives plant performance and rhizosphere microbiome adaptations of Astragalus mongholicus to drought. Environmental Microbiology 24:324−40 doi: 10.1111/1462-2920.15878 |
[68] |
Xie Z, Chu Y, Zhang W, Lang D, Zhang X. 2019. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environmental and Experimental Botany 158:99−106 doi: 10.1016/j.envexpbot.2018.11.021 |
[69] |
Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A. 2013. ACC Deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves Mycorrhizal colonization and Rhizobial nodulation in Trigonella foenum-graecum under drought stress. Journal of Plant Growth Regulation 32:809−22 doi: 10.1007/s00344-013-9347-3 |
[70] |
Lin Y, Zhang H, Li P, Jin J, Li Z. 2022. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress. BMC Plant Biology 22:475 doi: 10.1186/s12870-022-03859-4 |
[71] |
Chiappero J, del Rosario Cappellari L, Sosa Alderete LG, Palermo TB, Banchio E. 2019. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Industrial Crops and Products 139:111553 doi: 10.1016/j.indcrop.2019.111553 |
[72] |
Ghorbanpour M, Hatami M, Khavazi K. 2013. Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloids production of Hyoscyamus niger under water deficit stress. Turkish Journal of Biology 37:350−60 doi: 10.3906/biy-1209-12 |
[73] |
Asghari B, Khademian R, Sedaghati B. 2020. Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L. ) under water shortage condition. Scientia Horticulturae 263:109132 doi: 10.1016/j.scienta.2019.109132 |
[74] |
Heidari M, Mousavinik SM, Golpayegani A. 2011. Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L. ) under water stress. Journal of Agricultural and Biological Science 6:6−11 |
[75] |
Armada E, Probanza A, Roldán A, Azcón R. 2016. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. Journal of Plant Physiology 192:1−12 doi: 10.1016/j.jplph.2015.11.007 |
[76] |
Yue L, Uwaremwe C, Tian Y, Liu Y, Zhao X, et al. 2022. Bacillus amyloliquefaciens rescues glycyrrhizic acid loss under drought stress in Glycyrrhiza uralensis by activating the jasmonic acid pathway. Frontiers in Microbiology 12:798525 doi: 10.3389/fmicb.2021.798525 |
[77] |
Attarzadeh M, Balouchi H, Rajaie M, Movahhedi Dehnavi M, Salehi A. 2019. Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas florescent bacterium under different irrigation regimes. Journal of Environmental Management 231:182−88 doi: 10.1016/j.jenvman.2018.10.040 |
[78] |
Hao Z, Xie W, Jiang X, Wu Z, Zhang X, et al. 2019. Arbuscular mycorrhizal fungus improves Rhizobium–Glycyrrhiza seedling symbiosis under drought stress. Agronomy 9:572 doi: 10.3390/agronomy9100572 |
[79] |
Azizi S, Tabari Kouchaksaraei M, Hadian J, Fallah Nosrat Abad AR, Modarres Sanavi SAM, et al. 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology and Management 497:119478 doi: 10.1016/j.foreco.2021.119478 |
[80] |
Wang Y, Wang M, Li Y, Wu A, Huang J. 2018. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13:e0196408 doi: 10.1371/journal.pone.0196408 |
[81] |
Abd-Allah EF, Egamberdieva D. 2016. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pakistan Journal of Botany 48:37−45 |
[82] |
Cheng XF, Wu HH, Zou YN, Wu QS, Kuča K. 2021. Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiology and Biochemistry 162:27−35 doi: 10.1016/j.plaphy.2021.02.026 |
[83] |
Yilmaz A, Yildirim E, Yilmaz H, Soydemir HE, Güler E, et al. 2023. Use of Arbuscular Mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in Sweet Basil (Ocimum basilicum L. ). Sustainability 15:5982 doi: 10.3390/su15075982 |
[84] |
Hou L, Li X, He X, Zuo Y, Zhang D, et al. 2021. Effect of dark septate endophytes on plant performance of Artemisia ordosica and associated soil microbial functional group abundance under salt stress. Applied Soil Ecology 165:103998 doi: 10.1016/j.apsoil.2021.103998 |
[85] |
Yan K, Zhu M, Su H, Liu X, Li S, et al. 2024. Trichoderma asperellum boosts nitrogen accumulation and photosynthetic capacity of wolfberry (Lycium chinense) under saline soil stress. Tree Physiology 44:tpad148 doi: 10.1093/treephys/tpad148 |
[86] |
Sharma K, Sharma S, Vaishnav A, Jain R, Singh D, et al. 2022. Salt-tolerant PGPR strain Priestia endophytica SK1 promotes fenugreek growth under salt stress by inducing nitrogen assimilation and secondary metabolites. Journal of Applied Microbiology 133:2802−13 doi: 10.1111/jam.15735 |
[87] |
Li X, Lang D, Wang J, Zhang W, Zhang X. 2023. Plant-beneficial Streptomyces dioscori SF1 potential biocontrol and plant growth promotion in saline soil within the arid and semi-arid areas. Environmental Science and Pollution Research 30:70194−212 doi: 10.1007/s11356-023-27362-x |
[88] |
Qin S, Feng WW, Zhang YJ, Wang TT, Xiong YW, et al. 2018. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and Environmental Microbiology 84:e01533−18 doi: 10.1128/AEM.01533-18 |
[89] |
Qin S, Feng WW, Wang TT, Ding P, Xing K, et al. 2017. Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant and Soil 416:117−32 doi: 10.1007/s11104-017-3192-2 |
[90] |
Mousavi SS, Karami A, Saharkhiz MJ, Etemadi M, Ravanbakhsh M. 2022. Microbial amelioration of salinity stress in endangered accessions of Iranian licorice (Glycyrrhiza glabra L.). BMC Plant Biology 22:322 doi: 10.1186/s12870-022-03703-9 |
[91] |
Mousavi SS, Karami A, Saharkhiz MJ, Etemadi M, Zarshenas MM. 2022. Evaluation of metabolites in Iranian Licorice accessions under salinity stress and Azotobacter sp. inoculation. Scientific Reports 12:15837 doi: 10.1038/s41598-022-20366-6 |
[92] |
Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, et al. 2018. A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng. Frontiers in Plant Science 9:813 doi: 10.3389/fpls.2018.00813 |
[93] |
Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A. 2012. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiology and Biochemistry 58:227−35 doi: 10.1016/j.plaphy.2012.07.008 |
[94] |
Barnawal D, Bharti N, Tripathi A, Pandey SS, Chanotiya CS, et al. 2016. ACC-Deaminase-producing endophyte Brachybacterium paraconglomeratum Strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. Journal of Plant Growth Regulation 35:553−64 doi: 10.1007/s00344-015-9560-3 |
[95] |
Pankaj U, Singh DN, Mishra P, Gaur P, Vivek Babu CS, et al. 2020. Autochthonous halotolerant plant growth-promoting rhizobacteria promote bacoside A yield of Bacopa monnieri (L.) Nash and phytoextraction of salt-affected soil. Pedosphere 30:671−83 doi: 10.1016/S1002-0160(20)60029-7 |
[96] |
Egamberdieva D, Berg G, Lindström K, Räsänen LA. 2013. Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant and Soil 369:453−65 doi: 10.1007/s11104-013-1586-3 |
[97] |
Joe MM, Devaraj S, Benson A, Sa T. 2016. Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: Evaluation of plant growth promotion and antioxidant activity under salt stress. Journal of Applied Research on Medicinal and Aromatic Plants 3:71−77 |
[98] |
Al-Garni SMS, Khan MMA, Bahieldin A. 2019. Plant growth-promoting bacteria and silicon fertilizer enhance plant growth and salinity tolerance in Coriandrum sativum. Journal of Plant Interactions 14:386−96 doi: 10.1080/17429145.2019.1641635 |
[99] |
Bharti N, Yadav D, Barnawal D, Maji D, Kalra A. 2013. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L. ) Pennell under primary and secondary salt stress. World Journal of Microbiology and Biotechnology 29:379−87 doi: 10.1007/s11274-012-1192-1 |
[100] |
Razzaghi Komaresofla B, Ali Alikhani H, Etesami H, Khoshkholgh-Sima NA. 2019. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co–inoculation with endophytic and rhizosphere bacteria. Applied Soil Ecology 138:160−70 doi: 10.1016/j.apsoil.2019.02.022 |
[101] |
Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L. ). Canadian Journal of Microbiology 53:1195−202 doi: 10.1139/W07-082 |
[102] |
Rabiei Z, Hosseini SJ, Pirdashti H, Hazrati S. 2020. Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress. Heliyon 6:e05321 doi: 10.1016/j.heliyon.2020.e05321 |
[103] |
Egamberdieva D, Wirth S, Li L, Abd-Allah EF, Lindström K. 2017. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered 8:433−38 doi: 10.1080/21655979.2016.1250983 |
[104] |
Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A. 2014. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiologiae Plantarum 36:45−60 doi: 10.1007/s11738-013-1385-8 |
[105] |
Saidi S, Cherif-Silini H, Chenari Bouket A, Silini A, Eshelli M, et al. 2021. Improvement of Medicago sativa crops productivity by the co-inoculation of Sinorhizobium meliloti−Actinobacteria under salt stress. Current Microbiology 78:1344−57 doi: 10.1007/s00284-021-02394-z |
[106] |
Khalilpour M, Mozafari V, Abbaszadeh-Dahaji P. 2021. Tolerance to salinity and drought stresses in pistachio (Pistacia vera L.) seedlings inoculated with indigenous stress-tolerant PGPR isolates. Scientia Horticulturae 289:110440 doi: 10.1016/j.scienta.2021.110440 |
[107] |
Singh S, Chanotiya CS, Singh A, Vajpayee P, Kalra A. 2023. Role of ACC-deaminase synthesizing Trichoderma harzianum and plant growth-promoting bacteria in reducing salt-stress in Ocimum sanctum. Physiology and Molecular Biology of Plants 29:815−28 doi: 10.1007/s12298-023-01328-2 |
[108] |
Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, et al. 2016. The interaction between Arbuscular Mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology 7:1089 doi: 10.3389/fmicb.2016.01089 |
[109] |
Arora M, Saxena P, Abdin MZ, Varma A. 2020. Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis 80:61−73 doi: 10.1007/s13199-019-00656-w |
[110] |
Khademian R, Asghari B, Sedaghati B, Yaghoubian Y. 2019. Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): Physio-biochemical properties, fatty acids composition and secondary metabolites content. Industrial Crops and Products 136:129−39 doi: 10.1016/j.indcrop.2019.05.002 |
[111] |
Li J, Han Q, Zeng Q, Wang C, Wang Q, et al. 2024. Pollutant-resistant bacteria facilitate the assembly of rhizosphere microbiota to mitigate pollutant threat on Ligusticum Chuanxiong Hort. In cadmium-phoxim co-contaminated soil. SSRN http://dx.doi.org/10.2139/ssrn.4551090 |
[112] |
Rahman SU, Khalid M, Hui N, Rehman A, Kayani SI, et al. 2023. Piriformospora indica alter root-associated microbiome structure to enhance Artemisia annua L. tolerance to arsenic. Journal of Hazardous Materials 457:131752 doi: 10.1016/j.jhazmat.2023.131752 |
[113] |
Fan M, Xiao X, Guo Y, Zhang J, Wang E, et al. 2018. Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Chemosphere 197:729−40 doi: 10.1016/j.chemosphere.2018.01.102 |
[114] |
Pan F, Meng Q, Wang Q, Luo S, Chen B, et al. 2016. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance. Chemosphere 154:358−66 doi: 10.1016/j.chemosphere.2016.03.120 |
[115] |
Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, et al. 2014. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367−73 doi: 10.1016/j.chemosphere.2014.07.078 |
[116] |
Jiang X, Li WW, Han M, Chen G, Wu J, et al. 2022. Aluminum-tolerant, growth-promoting endophytic bacteria as contributors in promoting tea plant growth and alleviating aluminum stress. Tree Physiology 42:1043−58 doi: 10.1093/treephys/tpab159 |
[117] |
Chi Y, Ma X, Wu J, Wang R, Zhang X, et al. 2023. Plant growth promoting endophyte promotes cadmium accumulation in Solanum nigrum L. by regulating plant homeostasis. Journal of Hazardous Materials 457:131866 doi: 10.1016/j.jhazmat.2023.131866 |
[118] |
Cao P, Wei X, Wang G, Chen X, Han J, et al. 2022. Microbial inoculants and garbage fermentation liquid reduced root-knot nematode disease and As uptake in Panax quinquefolium cultivation by modulating rhizosphere microbiota community. Chinese Herbal Medicines 14:58−69 doi: 10.1016/j.chmed.2021.11.001 |
[119] |
Wei X, Cao P, Wang G, Han J. 2020. Microbial inoculant and garbage enzyme reduced cadmium (Cd) uptake in Salvia miltiorrhiza (Bge. ) under Cd stress. Ecotoxicology and Environmental Safety 192:110311 doi: 10.1016/j.ecoenv.2020.110311 |
[120] |
Chen M, Yang G, Sheng Y, Li P, Qiu H, et al. 2017. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Frontiers in Plant Science 8:931 doi: 10.3389/fpls.2017.00931 |
[121] |
Prakash J, Arora NK. 2019. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 9:126 doi: 10.1007/s13205-019-1660-5 |
[122] |
Pramanik P, Goswami AJ, Ghosh S, Kalita C. 2019. An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-east India. Journal of Applied Microbiology 126:215−22 doi: 10.1111/jam.14130 |
[123] |
Devi KA, Pandey P, Sharma GD. 2016. Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. HAYATI Journal of Biosciences 23:173−80 doi: 10.1016/j.hjb.2016.12.006 |
[124] |
Shi Z, Guo X, Lei Z, Wang Y, Yang Z, et al. 2023. Screening of high-efficiency nitrogen-fixing bacteria from the traditional Chinese medicine plant Astragalus mongolicus and its effect on plant growth promotion and bacterial communities in the rhizosphere. BMC Microbiology 23:292 doi: 10.1186/s12866-023-03026-1 |
[125] |
Xin W, Zhang J, Yu Y, Tian Y, Li H, et al. 2024. Root microbiota of tea plants regulate nitrogen homeostasis and theanine synthesis to influence tea quality. Current Biology 34:868−880.E6 doi: 10.1016/j.cub.2024.01.044 |
[126] |
Li L, Mohamad OAA, Ma J, Friel AD, Su Y, et al. 2018. Synergistic plant-microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111:1735−48 doi: 10.1007/s10482-018-1062-4 |
[127] |
Wang H, Wang Y, Jiang D, Xiang Z, Wang S, et al. 2022. Soil microbe inoculation alters the bacterial communities and promotes root growth of Atractylodes lancea under heat stress. Plant and Soil 478:371−89 doi: 10.1007/s11104-022-05369-6 |
[128] |
Singh S, Tripathi A, Chanotiya CS, Barnawal D, Singh P, et al. 2020. Cold stress alleviation using individual and combined inoculation of ACC deaminase producing microbes in Ocimum sanctum. Environmental Sustainability 3:289−301 doi: 10.1007/s42398-020-00118-w |
[129] |
Orujei Y, Shabani L, Sharifi-Tehrani M. 2013. Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi. Russian Journal of Plant Physiology 60:855−60 doi: 10.1134/S1021443713050129 |
[130] |
Li J, Meng B, Chai H, Yang X, Song W, et al. 2019. Arbuscular mycorrhizal fungi alleviate drought stress in C(3) (Leymus chinensis) and C(4) (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science 10:499 doi: 10.3389/fpls.2019.00499 |
[131] |
Irankhah S, Ganjeali A, Mashreghi M, Lari Z. 2021. Mixed inoculum of rhizobacteria and arbuscular mycorrhizal fungus enhance diosgenin contain and phosphorus uptake in fenugreek under drought stress. Rhizosphere 18:100338 doi: 10.1016/j.rhisph.2021.100338 |
[132] |
Mukhopadhyay R, Sarkar B, Jat HS, Sharma PC, Bolan NS. 2021. Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management 280:111736 doi: 10.1016/j.jenvman.2020.111736 |
[133] |
Angon PB, Tahjib-Ul-Arif M, Samin SI, Habiba U, Hossain MA, et al. 2022. How do plants respond to combined drought and salinity stress?-A systematic review. Plants 11:2884 doi: 10.3390/plants11212884 |
[134] |
Dastogeer KMG, Zahan MI, Tahjib-Ul-Arif M, Akter MA, Okazaki S. 2020. Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: A meta-analysis. Frontiers in Plant Science 11:588550 doi: 10.3389/fpls.2020.588550 |
[135] |
Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T. 2014. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611−25 doi: 10.1007/s00572-014-0582-7 |
[136] |
Si T, Lu J, Cao Y, Tang Z, Ci D, et al. 2024. Physiological, transcriptional and metabolomic evidence for arbuscular mycorrhizal fungi and Lactobacillus plantarum in peanut resistance to salinity stress. Journal of Agronomy and Crop Science 210:e12672 doi: 10.1111/jac.12672 |
[137] |
Tan JY, Yue ZC, Li ST, Pan YY, Chu ZY, et al. 2024. Alleviation of salt stress and changes in glycyrrhizic acid accumulation by dark septate endophytes in Glycyrrhiza glabra grown under salt stress. Journal of Agricultural and Food Chemistry 72:14557−14569 doi: 10.1021/acs.jafc.4c00700 |
[138] |
Farh MEA, Kim YJ, Sukweenadhi J, Singh P, Yang DC. 2017. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Microbiological Research 200:45−52 doi: 10.1016/j.micres.2017.04.004 |
[139] |
Płociniczak T, Chodór M, Pacwa-Płociniczak M, Piotrowska-Seget Z. 2019. Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants. Chemosphere 219:250−60 doi: 10.1016/j.chemosphere.2018.12.018 |
[140] |
Chamkhi I, Zwanzig J, Ibnyasser A, Cheto S, Geistlinger J, et al. 2023. Siccibacter colletis as a member of the plant growth-promoting rhizobacteria consortium to improve faba-bean growth and alleviate phosphorus deficiency stress. Frontiers in Sustainable Food Systems 7:1134809 doi: 10.3389/fsufs.2023.1134809 |
[141] |
Deng C, Sun RT, Ma Q, Yang QH, Zhou N, et al. 2022. Mycorrhizal effects on active components and associated gene expressions in leaves of Polygonum cuspidatum under P stress. Agronomy 12:2970 doi: 10.3390/agronomy12122970 |
[142] |
Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, et al. 2012. Transcriptomic response of Arabidopsis thaliana after 24h incubation with the biocontrol fungus Trichoderma harzianum. Journal of Plant Physiology 169:614−20 doi: 10.1016/j.jplph.2011.12.016 |
[143] |
Tiwari S, Prasad V, Chauhan PS, Lata C. 2017. Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science 8:1510 doi: 10.3389/fpls.2017.01510 |
[144] |
Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F. 2021. Plant secondary metabolites: an opportunity for circular economy. Molecules 26:495 doi: 10.3390/molecules26020495 |
[145] |
Sun Y, Alseekh S, Fernie AR. 2023. Plant secondary metabolic responses to global climate change: A meta-analysis in medicinal and aromatic plants. Global Change Biology 29:477−504 doi: 10.1111/gcb.16484 |
[146] |
Yu JB, Bai M, Wang C, Wu H, Liang X. 2024. Regulation of secondary metabolites accumulation in medicinal plants by rhizospheric and endophytic microorganisms. Medicinal Plant Biology 3:e011 doi: 10.48130/mpb-0024-0011 |
[147] |
He C, Wang W, Hou J, Li X. 2021. Dark septate endophytes isolated from wild licorice roots grown in the desert regions of northwest china enhance the growth of host plants under water deficit stress. Frontiers in Microbiology 12:522449 doi: 10.3389/fmicb.2021.522449 |
[148] |
Amanifar S, Khodabandeloo M, Mohseni Fard E, Askari MS, Ashrafi M. 2019. Alleviation of salt stress and changes in glycyrrhizin accumulation by arbuscular mycorrhiza in liquorice (Glycyrrhiza glabra) grown under salinity stress. Environmental and Experimental Botany 160:25−34 doi: 10.1016/j.envexpbot.2019.01.001 |
[149] |
Mishra BK, Meena KK, Dubey PN, Aishwath OP, Kant K, et al. 2016. Influence on yield and quality of fennel (Foeniculum vulgare Mill. ) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacterial isolates. Ecological Engineering 97:327−33 doi: 10.1016/j.ecoleng.2016.10.034 |
[150] |
Bharti N, Barnawal D, Shukla S, Tewari SK, Katiyar RS, et al. 2016. Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Industrial Crops and Products 83:717−28 doi: 10.1016/j.indcrop.2015.12.021 |
[151] |
Lazzara S, Militello M, Carrubba A, Napoli E, Saia S. 2017. Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza 27:345−54 doi: 10.1007/s00572-016-0756-6 |
[152] |
Ran Z, Ding W, Cao S, Fang L, Zhou J, et al. 2022. Arbuscular mycorrhizal fungi: Effects on secondary metabolite accumulation of traditional Chinese medicines. Plant Biology 24:932−38 doi: 10.1111/plb.13449 |