[1] |
Che P, Wu E, Simon MK, Anand A, Lowe K, et al. 2022. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Communications Biology 5:344 doi: 10.1038/s42003-022-03308-w |
[2] |
Gelvin SB. 2017. Integration of Agrobacterium T-DNA into the plant genome. Annual Review of Genetics 51:195−217 doi: 10.1146/annurev-genet-120215-035320 |
[3] |
Benson EE. 2000. Special symposium: in vitro plant recalcitrance in vitro plant recalcitrance: an introduction. In Vitro Cellular & Developmental Biology - Plant 36:141−48 doi: 10.1007/s11627-000-0029-z |
[4] |
Chetty VJ, Ceballos N, Garcia D, Narváez-Vásquez J, Lopez W, et al. 2013. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Reports 32:239−47 doi: 10.1007/s00299-012-1358-1 |
[5] |
Cho MJ, Jiang W, Lemaux PG. 1998. Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Science 138:229−44 doi: 10.1016/S0168-9452(98)00162-9 |
[6] |
Dan Y, Zhang S, Zhong H, Yi H, Sainz MB. 2015. Novel compounds that enhance Agrobacterium-mediated plant transformation by mitigating oxidative stress. Plant Cell Reports 34:291−309 doi: 10.1007/s00299-014-1707-3 |
[7] |
Liu YR, Cen HF, Yan JP, Zhang YW, Zhang WJ. 2015. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars. Plant Cell Reports 34:1099−108 doi: 10.1007/s00299-015-1769-x |
[8] |
Pitzschke A. 2013. Agrobacterium infection and plant defense—transformation success hangs by a thread. Frontiers in Plant Science 4:519 doi: 10.3389/fpls.2013.00519 |
[9] |
Gelvin SB. 2021. Plant DNA repair and Agrobacterium T−DNA integration. International Journal of Molecular Sciences 22:8458 doi: 10.3390/ijms22168458 |
[10] |
Van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJJ, et al. 2016. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nature Plants 2:16164 doi: 10.1038/nplants.2016.164 |
[11] |
Liu H, Ma H, Zhang W, Wang W, Wu J, et al. 2023. Identification of three wheat near isogenic lines originated from CB037 on tissue culture and transformation capacities. Plant Cell, Tissue and Organ Culture (PCTOC) 152:67−79 doi: 10.1007/s11240-022-02389-z |
[12] |
Peña L, Pérez RM, Cervera M, Juárez JA, Navarro L. 2004. Early events in Agrobacterium-mediated genetic transformation of citrus explants. Annals of Botany 94:67−74 doi: 10.1093/aob/mch117 |
[13] |
Almeida WAB, Mourão Filho FAA, Pino LE, Boscariol RL, Rodriguez APM, et al. 2003. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Science 164:203−11 doi: 10.1016/S0168-9452(02)00401-6 |
[14] |
Marutani-Hert M, Bowman KD, McCollum GT, Mirkov TE, Evens TJ, et al. 2012. A dark incubation period is important for Agrobacterium-mediated transformation of mature internode explants of sweet orange, grapefruit, citron, and a citrange rootstock. PLoS One 7:e47426 doi: 10.1371/journal.pone.0047426 |
[15] |
Wu H, Acanda Y, Shankar A, Peeples M, Hubbard C, et al. 2015. Genetic transformation of commercially important mature citrus scions. Crop Science 55:2786−97 doi: 10.2135/cropsci2015.01.0013 |
[16] |
Cervera M, Navarro A, Navarro L, Peña L. 2008. Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiology 28:55−66 doi: 10.1093/treephys/28.1.55 |
[17] |
Gasic K, Preece JE, Karp D. 2020. Register of new fruit and nut cultivars list 50. HortScience 55:1164−201 doi: 10.21273/HORTSCI50register-20 |
[18] |
Grosser JW. 2017. Sweet orange tree named 'Florida EV1'. USA: Florida Foundation Seed Producers. USPTO Plant Patent Appl 14/998,502. Pub No. US 2017/0202121 P1. pp. 3 |
[19] |
Larkin PJ, Scowcroft WR. 1981. Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics 60:197−214 doi: 10.1007/BF02342540 |
[20] |
Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, et al. 2020. Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. Functional Plant Biology 47:508−23 doi: 10.1071/FP19077 |
[21] |
Ban S, Jung JH. 2023. Somatic mutations in fruit trees: causes, detection methods, and molecular mechanisms. Plants 12:1316 doi: 10.3390/plants12061316 |
[22] |
Febres V, Fisher L, Khalaf A, Moore GA. 2011. Citrus transformation: challenges and prospects. In Genetic Transformation, ed. Alvarez M. UK: IntechOpen. pp 101−22. doi: 10.5772/24526 |
[23] |
Canton M, Wu H, Dutt M, Zale J. 2022. A new liquid selection system for mature citrus transformation. Scientia Horticulturae 293:110672 doi: 10.1016/j.scienta.2021.110672 |
[24] |
Merritt BA, Zhang X, Triplett EW, Mou Z, Orbović V. 2021. Selection of transgenic citrus plants based on glyphosate tolerance conferred by a citrus 5-enolpyruvylshikimate-3-phosphate synthase variant. Plant Cell Reports 40:1947−56 doi: 10.1007/s00299-021-02760-y |
[25] |
Lazo GR, Stein PA, Ludwig RA. 1991. A DNA transformation–competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9:963−67 doi: 10.1038/nbt1091-963 |
[26] |
Murashige T, Tucker D. 1969. Growth factor requirements of citrus tissue culture. Proc. First International Citrus Symposium, California, USA, 1969, 3:1155−61. USA: University of California Riverside. |
[27] |
Wen L, Tan B, Guo WW. 2012. Estimating transgene copy number in precocious trifoliate orange by TaqMan real-time PCR. Plant Cell, Tissue and Organ Culture (PCTOC) 109:363−71 doi: 10.1007/s11240-011-0101-x |
[28] |
Omar AA, Dekkers MGH, Graham JH, Grosser JW. 2008. Estimation of transgene copy number in transformed citrus plants by quantitative multiplex real-time PCR. Biotechnology Progress 24:1241−48 doi: 10.1002/btpr.62 |
[29] |
Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, et al. 1983. Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences of the United States of America 80:4803−07 doi: 10.1073/pnas.80.15.4803 |
[30] |
Yenofsky RL, Fine M, Pellow JW. 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proceedings of the National Academy of Sciences of the United States of America 87:3435−39 doi: 10.1073/pnas.87.9.3435 |
[31] |
Ginzinger DG. 2002. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Experimental Hematology 30:503−12 doi: 10.1016/S0301-472X(02)00806-8 |
[32] |
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29:e45 doi: 10.1093/nar/29.9.e45 |
[33] |
Wu H, Canton M, Mahmoud LM, Weber KR, Michalczyk GZ, et al. 2022. Identification and characterization of two putative citrus phosphomannose isomerase (CsPMI) genes as selectable markers for mature citrus transformation. Horticulturae 8:204 doi: 10.3390/horticulturae8030204 |
[34] |
Li G, Zhou Z, Liu G, Zheng F, He C. 2007. Characterization of T-DNA insertion patterns in the genome of rice blast fungus Magnaporthe oryzae. Current Genetics 51:233−43 doi: 10.1007/s00294-007-0122-5 |
[35] |
Wu H, Sparks CA, Jones HD. 2006. Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Molecular Breeding 18:195−208 doi: 10.1007/s11032-006-9027-0 |
[36] |
Funke T, Han H, Healy-Fried ML, Fischer M, Schönbrunn E. 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proceedings of the National Academy of Sciences of the United States of America 103:13010−15 doi: 10.1073/pnas.0603638103 |
[37] |
Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, et al. 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Science 35:1451−61 doi: 10.2135/cropsci1995.0011183X003500050032x |
[38] |
Beruto M, Beruto D, Debergh P. 1999. Influence of agar on in vitro cultures: I. Physicochemical properties of agar and agar gelled media. In Vitro Cellular & Developmental Biology - Plant 35:86−93 doi: 10.1007/s11627-999-0016-y |
[39] |
Beruto M, Curir P. 2006. Effects of agar and gel characteristics on micropropagation: Ranunculus asiaticus, a case study. In Floriculture, Ornamental and Plant Biotechnology, volume 2, ed. Teixeira da Silva JA. UK: Global Science Books. pp. 277−84 |
[40] |
Cavallaro V, Tringali S, Barbera A, Castiglione V. 2010. Influence of gelling agents on in vitro shoot proliferation of globe artichoke [Cynara cardunculus subsp.scolymus (L.) Hegi] genotypes. Advances in Horticultural Science 24:1000−06 doi: 10.1400/153232 |
[41] |
Karapanos IC, Fasseas C, Olympios CM, Passam HC. 2006. Factors affecting the efficacy of agar-based substrates for the study of tomato pollen germination. The Journal of Horticultural Science and Biotechnology 81:631−38 doi: 10.1080/14620316.2006.11512116 |
[42] |
Beruto M, La Rosa C, Portogallo C. 2001. Effects of agar impurities on in vitro propagation of Ranunculus asiaticus L. Acta Horticulturae 560:399−402 doi: 10.17660/actahortic.2001.560.76 |
[43] |
Casanova E, Moysset L, Trillas MI. 2008. Effects of agar concentration and vessel closure on the organogenesis and hyperhydricity of adventitious carnation shoots. Biologia Plantarum 52:1−8 doi: 10.1007/s10535-008-0001-z |
[44] |
Adelberg JW. 2016. Micropropagation in liquid culture using partial immersion systems. Acta Horticulturae 1113:35−46 doi: 10.17660/ActaHortic.2016.1113.5 |