[1]

Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemmistry 72:21−34

doi: 10.1016/j.plaphy.2013.02.001
[2]

Andersen JR, Zein I, Wenzel G, Darnhofer B, Eder J, et al. 2008. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds. BMC Plant Biology 8:2

doi: 10.1186/1471-2229-8-2
[3]

Hoang VL, Innes DJ, Shaw PN, Monteith GR, Gidley MJ, et al. 2015. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics 16:561

doi: 10.1186/s12864-015-1784-x
[4]

Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T. 2003. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Current Biology 13:421−26

doi: 10.1016/S0960-9822(03)00106-4
[5]

Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, et al. 2009. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genetics 5:e1000777

doi: 10.1371/journal.pgen.1000777
[6]

Huang J, Zhang C, Zhao X, Fei Z, Wan K, et al. 2016. The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees. PLoS Genetics 12:e1006433

doi: 10.1371/journal.pgen.1006433
[7]

Huang X, Kurata N, Wei X, Wang ZX, Wang A, et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497−501

doi: 10.1038/nature11532
[8]

Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, et al. 2012. Comparative population genomics of maize domestication and improvement. Nature Genetics 44:808−11

doi: 10.1038/ng.2309
[9]

Lei Y, Yang L, Duan S, Ning S, Li D, et al. 2022. Whole-genome resequencing reveals the origin of tea in Lincang. Frontiers in Plant Science 13:984422

doi: 10.3389/fpls.2022.984422
[10]

Ren G, Zhang X, Li Y, Ridout K, Serrano-Serrano ML, et al. 2021. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Science Advances 7:eabg2286

doi: 10.1126/sciadv.abg2286
[11]

Zhao H, Sun S, Ding Y, Wang Y, Yue X, et al. 2021. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits. Nature Communications 12:5466

doi: 10.1038/s41467-021-25795-x
[12]

Kaeppler SM, Kaeppler HF, Rhee Y. 2000. Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology 43:179−88

doi: 10.1023/A:1006423110134
[13]

Iwasaki M, Paszkowski J. 2014. Epigenetic memory in plants. The EMBO Journal 33:1987−98

doi: 10.15252/embj.201488883
[14]

Jones MJ, Goodman SJ, Kobor MS. 2015. DNA methylation and healthy human aging. Aging Cell 14:924−32

doi: 10.1111/acel.12349
[15]

Kulis M, Esteller M. 2010. DNA methylation and cancer. Advances in Genetics 70:27−56

doi: 10.1016/B978-0-12-380866-0.60002-2
[16]

Weber M, Schübeler D. 2007. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Current Opinion in Cell Biology 19:273−80

doi: 10.1016/j.ceb.2007.04.011
[17]

Lin L, Wang S, Zhang J, Song X, Zhang D, et al. 2022. Integrative analysis of transcriptome and metabolome reveals the effect of DNA methylation of chalcone isomerase gene in promoter region on Lithocarpus polystachyus Rehd flavonoids. Synthetic and Systems Biotechnology 7:928−40

doi: 10.1016/j.synbio.2022.05.003
[18]

Strygina K, Khlestkina E. 2022. Flavonoid biosynthesis genes in Triticum aestivum L.: methylation patterns in cis-regulatory regions of the duplicated CHI and F3H genes. Biomolecules 12:689

doi: 10.3390/biom12050689
[19]

Jia H, Jia H, Lu S, Zhang Z, Su Z, et al. 2022. DNA and histone methylation regulates different types of fruit ripening by transcriptome and proteome analyses. Journal of Agricultural and Food Chemistry 70:3541−56

doi: 10.1021/acs.jafc.1c06391
[20]

An YQC, Goettel W, Han Q, Bartels A, Liu Z, et al. 2017. Dynamic changes of genome-wide DNA methylation during soybean seed development. Scientific Reports 7:12263

doi: 10.1038/s41598-017-12510-4
[21]

Huang H, Liu R, Niu Q, Tang K, Zhang B, et al. 2019. Global increase in DNA methylation during orange fruit development and ripening. Proceedings of the National Academy of Sciences of the United States of America 116:1430−36

doi: 10.1073/pnas.1815441116
[22]

Povilus RA, Friedman WE. 2022. Transcriptomes across fertilization and seed development in the water lily Nymphaea thermarum (Nymphaeales): evidence for epigenetic patterning during reproduction. Plant Reproduction 35:161−78

doi: 10.1007/s00497-022-00438-3
[23]

Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, et al. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92−94

doi: 10.1126/science.1180677
[24]

Kiefer C, Willing EM, Jiao WB, Sun H, Piednoël M, et al. 2019. Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. Nature Plants 5:846−55

doi: 10.1038/s41477-019-0486-9
[25]

Xue Y, Shi Y, Qi Y, Yu H, Zou C, et al. 2022. Epigenetic and Genetic Contribution for Expression Bias of Homologous Alleles in Polyploid Sugarcane. Agronomy 12:2852

doi: 10.3390/agronomy12112852
[26]

Zhong Z, Feng S, Mansfeld BN, Ke Y, Qi W, et al. 2023. Haplotype-resolved DNA methylome of African cassava genome. Plant Biotech nology Journal 21:247−49

doi: 10.1111/pbi.13955
[27]

Becker C, Hagmann J, Müller J, Koenig D, Stegle O, et al. 2011. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245−49

doi: 10.1038/nature10555
[28]

He L, Xu X, Li Y, Li C, Zhu Y, et al. 2013. Transcriptome analysis of buds and leaves using 454 pyrosequencing to discover genes associated with the biosynthesis of active ingredients in Lonicera japonica Thunb. PLoS One 8:e62922

doi: 10.1371/journal.pone.0062922
[29]

Liu T, Yang J, Liu S, Zhao Y, Zhou J, et al. 2020. Regulation of chlorogenic acid, flavonoid, and iridoid biosynthesis by histone H3K4 and H3K9 methylation in Lonicera japonica. Molecular Biology Reports 47:9301−11

doi: 10.1007/s11033-020-05990-7
[30]

Huang W, Xiong L, Zhang L, Zhang F, Han X, et al. 2022. Study on content variation of flavonoids in different germplasm during development of Lonicerae Japonicae Flos. Chinese Traditional and Herbal Drugs 53:3156−64

doi: 10.7501/j.issn.0253-2670.2022.10.026
[31]

Yu H, Cui N, Guo K, Xu W, Wang H. 2023. Epigenetic changes in the regulation of carotenoid metabolism during honeysuckle flower development. Horticultural Plant Journal 9:577−88

doi: 10.1016/j.hpj.2022.11.003
[32]

Yu H, Guo K, Lai K, Shah MA, Xu Z, et al. 2022. Chromosome-scale genome assembly of an important medicinal plant honeysuckle. Scientific Data 9:226

doi: 10.1038/s41597-022-01385-4
[33]

Xanthopoulou A, Manioudaki M, Bazakos C, Kissoudis C, Farsakoglou AM, et al. 2020. Whole genome re-sequencing of sweet cherry (Prunus avium L.) yields insights into genomic diversity of a fruit species. Horticulture Research 7:60

doi: 10.1038/s41438-020-0281-9
[34]

Xu Q, Wu L, Luo Z, Zhang M, Lai J, et al. 2022. DNA demethylation affects imprinted gene expression in maize endosperm. Genome Biology 23:77

doi: 10.1186/s13059-022-02641-x
[35]

Wang ZH, Zhang D, Bai Y, Zhang YH, Liu Y, et al. 2013. Genomewide variation in an introgression line of rice-Zizania revealed by whole-genome re-sequencing. PLoS One 8:e74479

doi: 10.1371/journal.pone.0074479
[36]

Wang H, Beyene G, Zhai J, Feng S, Fahlgren N, et al. 2015. CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proceedings of the National Academy of Sciences of the United States of America 112:13729−34

doi: 10.1073/pnas.1519067112
[37]

Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, et al. 2013. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Research 23:628−37

doi: 10.1101/gr.146985.112
[38]

Schmitz RJ, He Y, Valdés-López O, Khan SM, Joshi T, et al. 2013. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Research 23:1663−74

doi: 10.1101/gr.152538.112
[39]

Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, et al. 2011. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369−73

doi: 10.1126/science.1212959
[40]

Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM. 2014. Flavonoid–metal ion complexes: a novel class of therapeutic agents. Medicinal Research Reviews 34:677−702

doi: 10.1002/med.21301
[41]

Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, et al. 2013. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology 31:154−59

doi: 10.1038/nbt.2462
[42]

Zheng X, Wang T, Cheng T, Zhao L, Zheng X, et al. 2022. Genomic variation reveals demographic history and biological adaptation of the ancient relictual, lotus (Nelumbo Adans). Horticulture Research 9:uhac029

doi: 10.1093/hr/uhac029
[43]

Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. 2008. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125−29

doi: 10.1038/nature07324
[44]

Bewick AJ, Ji L, Niederhuth CE, Willing EM, Hofmeister BT, et al. 2016. On the origin and evolutionary consequences of gene body DNA methylation. Proceedings of the National Academy of Sciences of the United States of America 113:9111−16

doi: 10.1073/pnas.1604666113
[45]

Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, et al. 2015. A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. Plant Physiology 168:1433−47

doi: 10.1104/pp.15.00408
[46]

Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X, Ye M. 2018. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharmaceutical Biology 56:465−84

doi: 10.1080/13880209.2018.1492620
[47]

Ji H, Shin Y, Lee C, Oh H, Yoon IS, et al. 2021. Genomic Variation in Korean japonica Rice Varieties. Genes 12:1749

doi: 10.3390/genes12111749
[48]

Li R, Maioli A, Lanteri S, Moglia A, Bai Y, et al. 2023. Genomic analysis highlights putative defective susceptibility genes in tomato germplasm. Plants 12:2289

doi: 10.3390/plants12122289
[49]

Skarzyńska A, Pawełkowicz M, Pląder W. 2021. Influence of transgenesis on genome variability in cucumber lines with a thaumatin II gene. Physiology and Molecular Biology of Plants 27:985−96

doi: 10.1007/s12298-021-00990-8
[50]

Cui Y, Ge Q, Zhao P, Chen W, Sang X, et al. 2021. Rapid mining of candidate genes for verticillium wilt resistance in cotton based on BSA-Seq analysis. Frontiers in Plant Science 12:703011

doi: 10.3389/fpls.2021.703011
[51]

Mas-Gómez J, Cantín CM, Moreno MÁ, Martínez-García PJ. 2022. Genetic diversity and genome-wide association study of morphological and quality traits in peach using two Spanish peach germplasm collections. Frontiers in Plant Science 13:854770

doi: 10.3389/fpls.2022.854770
[52]

Eichten SR, Stuart T, Srivastava A, Lister R, Borevitz JO. 2016. DNA methylation profiles of diverse Brachypodium distachyon align with underlying genetic diversity. Genome Research 26:1520−31

doi: 10.1101/gr.205468.116
[53]

Hu W, Ji C, Shi H, Liang Z, Ding Z, et al. 2021. Allele-defined genome reveals biallelic differentiation during cassava evolution. Molecular Plant 14:851−54

doi: 10.1016/j.molp.2021.04.009
[54]

Yin YC, Zhang XD, Gao ZQ, Hu T, Liu Y. 2019. The research progress of chalcone isomerase (CHI) in plants. Molecular Biotechnology 61:32−52

doi: 10.1007/s12033-018-0130-3
[55]

Jiang W, Yin Q, Wu R, Zheng G, Liu J, et al. 2015. Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana. Journal of Experimental Botany 66:7165−79

doi: 10.1093/jxb/erv413
[56]

Wang M, Zhang Y, Zhu C, Yao X, Zheng Z, et al. 2021. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. Plant Physiology 172:1966−82

doi: 10.1111/ppl.13407
[57]

Jia D, Li Z, Dang Q, Shang L, Shen J, et al. 2020. Anthocyanin biosynthesis and methylation of the MdMYB10 promoter are associated with the red blushed-skin mutant in the red striped-skin "Changfu 2" apple. Journal of Agricultural and Food Chemistry 68:4292−304

doi: 10.1021/acs.jafc.9b07098
[58]

Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, et al. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology 19:470−74

doi: 10.1038/88150
[59]

Yuan Y, Zuo J, Zhang H, Li R, Yu M, et al. 2022. Integration of Transcriptome and Metabolome Provides New Insights to Flavonoids Biosynthesis in Dendrobium huoshanense. Frontiers in Plant Science 13:850090

doi: 10.3389/fpls.2022.850090
[60]

Schilbert HM, Schöne M, Baier T, Busche M, Viehöver P, et al. 2021. Characterization of the Brassica napus Flavonol Synthase Gene Family Reveals Bifunctional Flavonol Synthases. Frontiers in Plant Science 12:733762

doi: 10.3389/fpls.2021.733762