[1] |
Palmer JD, Herbon LA. 1988. Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. Journal of Molecular Evolution 28:87−97 doi: 10.1007/BF02143500 |
[2] |
Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America 84:9054−58 doi: 10.1073/pnas.84.24.9054 |
[3] |
Smith DR, Keeling PJ. 2015. Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proceedings of the National Academy of Sciences of the United States of America 112:10177−84 doi: 10.1073/pnas.1422049112 |
[4] |
Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD. 2007. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evolutionary Biology 7:135 doi: 10.1186/1471-2148-7-135 |
[5] |
Sloan DB, Oxelman B, Rautenberg A, Taylor DR. 2009. Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evolutionary Biology 9:260 doi: 10.1186/1471-2148-9-260 |
[6] |
Zhu A, Guo W, Jain K, Mower JP. 2014. Unprecedented heterogeneity in the synonymous substitution rate within a plant genome. Molecular Biology and Evolution 31:1228−36 doi: 10.1093/molbev/msu079 |
[7] |
Wang J, Kan S, Liao X, Zhou J, Tembrock LR, et al. 2024. Plant organellar genomes: Much done, much more to do. Trends in Plant Science 29:754−69 doi: 10.1016/j.tplants.2023.12.014 |
[8] |
Cho Y, Mower JP, Qiu YL, Palmer JD. 2004. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of the National Academy of Sciences of the United States of America 101:17741−46 doi: 10.1073/pnas.0408302101 |
[9] |
Lynch M, Koskella B, Schaack S. 2006. Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727−30 doi: 10.1126/science.1118884 |
[10] |
Smith DR. 2016. The mutational hazard hypothesis of organelle genome evolution: 10 years on. Molecular Ecology 25:3769−75 doi: 10.1111/mec.13742 |
[11] |
Zwonitzer KD, Tressel LG, Wu Z, Kan S, Broz AK, et al. 2024. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 121:e2317240121 doi: 10.1073/pnas.2317240121 |
[12] |
Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, et al. 2012. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biology 10:e1001241 doi: 10.1371/journal.pbio.1001241 |
[13] |
Christensen AC. 2013. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biology and Evolution 5:1079−86 doi: 10.1093/gbe/evt069 |
[14] |
Christensen AC. 2014. Genes and junk in plant mitochondria—repair mechanisms and selection. Genome Biology and Evolution 6:1448−53 doi: 10.1093/gbe/evu115 |
[15] |
Butenko A, Lukeš J, Speijer D, Wideman JG. 2024. Mitochondrial genomes revisited: Why do different lineages retain different genes? BMC Biology 22:15 doi: 10.1186/s12915-024-01824-1 |
[16] |
Wang J, He W, Liao X, Ma J, Gao W, et al. 2023. Phylogeny, molecular evolution, and dating of divergences in Lagerstroemia using plastome sequences. Horticultural Plant Journal 9:345−55 doi: 10.1016/j.hpj.2022.06.005 |
[17] |
Preuten T, Cincu E, Fuchs J, Zoschke R, Liere K, et al. 2010. Fewer genes than organelles: Extremely low and variable gene copy numbers in mitochondria of somatic plant cells. The Plant Journal 64:948−59 doi: 10.1111/j.1365-313X.2010.04389.x |
[18] |
Zhang L, Ma J, Shen Z, Wang B, Jiang Q, et al. 2023. Low copy numbers for mitochondrial DNA moderates the strength of nuclear–cytoplasmic incompatibility in plants. Journal of Integrative Plant Biology 65:739−54 doi: 10.1111/jipb.13400 |
[19] |
Shen J, Zhang Y, Havey MJ, Shou W. 2019. Copy numbers of mitochondrial genes change during melon leaf development and are lower than the numbers of mitochondria. Horticulture Research 6:95 doi: 10.1038/s41438-019-0177-8 |
[20] |
Krämer C, Boehm CR, Liu J, Ting MKY, Hertle AP, et al. 2024. Removal of the large inverted repeat from the plastid genome reveals gene dosage effects and leads to increased genome copy number. Nature Plants 10:923−35 doi: 10.1038/s41477-024-01709-9 |
[21] |
Gandini CL, Garcia LE, Abbona CC, Ceriotti LF, Kushnir S, et al. 2023. Break-induced replication is the primary recombination pathway in plant somatic hybrid mitochondria: A model for mitochondrial horizontal gene transfer. Journal of Experimental Botany 74:3503−17 doi: 10.1093/jxb/erad104 |
[22] |
Gualberto JM, Newton KJ. 2017. Plant mitochondrial genomes: Dynamics and mechanisms of mutation. Annual Review of Plant Biology 68:225−52 doi: 10.1146/annurev-arplant-043015-112232 |
[23] |
Fan W, Liu F, Jia Q, Du H, Chen W, et al. 2022. Fragaria mitogenomes evolve rapidly in structure but slowly in sequence and incur frequent multinucleotide mutations mediated by microinversions. New Phytologist 236:745−59 doi: 10.1111/nph.18334 |
[24] |
Wu Z, Waneka G, Sloan DB. 2020. The tempo and mode of angiosperm mitochondrial genome divergence inferred from intraspecific variation in Arabidopsis thaliana. G3 Genes Genomes Genetics 10:1077−86 doi: 10.1534/g3.119.401023 |
[25] |
Xiang QP, Tang JY, Yu JG, Smith DR, Zhu YM, et al. 2022. The evolution of extremely diverged plastomes in Selaginellaceae (lycophyte) is driven by repeat patterns and the underlying DNA maintenance machinery. The Plant Journal 111:768−84 doi: 10.1111/tpj.15851 |
[26] |
Lee Y, Cho CH, Noh C, Yang JH, Park SI, et al. 2023. Origin of minicircular mitochondrial genomes in red algae. Nature Communications 14:3363 doi: 10.1038/s41467-023-39084-2 |
[27] |
Wu Z, Waneka G, Broz AK, King CR, Sloan DB. 2020. MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes. Proceedings of the National Academy of Sciences of the United States of America 117:16448−55 doi: 10.1073/pnas.2001998117 |
[28] |
Odahara M, Sekine Y. 2018. RECX interacts with mitochondrial RECA to maintain mitochondrial genome stability. Plant Physiology 177:300−10 doi: 10.1104/pp.18.00218 |
[29] |
Lynch M. 2010. Evolution of the mutation rate. Trends in Genetics 26:345−52 doi: 10.1016/j.tig.2010.05.003 |
[30] |
Broz AK, Keene A, Fernandes Gyorfy M, Hodous M, Johnston IG, et al. 2022. Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity. Proceedings of the National Academy of Sciences of the United States of America 119:e2206973119 doi: 10.1073/pnas.2206973119 |
[31] |
Khachaturyan M, Santer M, Reusch TBH, Dagan T. 2024. Heteroplasmy is rare in plant mitochondria compared with plastids despite similar mutation rates. Molecular Biology and Evolution 41:msae135 doi: 10.1093/molbev/msae135 |
[32] |
Broz AK, Sloan DB, Johnston IG. 2024. Stochastic organelle genome segregation through Arabidopsis development and reproduction. New Phytologist 241:896−910 doi: 10.1111/nph.19288 |
[33] |
Postel Z, Sloan DB, Gallina S, Godé C, Schmitt E, et al. 2023. The decoupled evolution of the organellar genomes of Silene nutans leads to distinct roles in the speciation process. New Phytologist 239:766−77 doi: 10.1111/nph.18966 |