[1] |
Taha RM, Mahmad N, Yaacob JS, Abdullah N, Mohajer S. 2013. Synthetic seeds production and regeneration of Oxalis triangularis for mass propagation and conservation. International Journal Environmental and Science Development 4:461−64 doi: 10.7763/IJESD.2013.V4.394 |
[2] |
Rojas C, Díaz G, Montenegro O, Ferrada E. 2023. Occurrence of leaf rust disease in Oxalis triangularis caused by Puccinia oxaliatis in Valdivia, Chile. Plant Disease 107:2225 doi: 10.1094/PDIS-07-22-1538-PDN |
[3] |
Salahuddin H, Mansoor Q, Batool R, Farooqi AA, Mahmood T, et al. 2016. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line. Cellular and Molecular Biology 62:60−63 |
[4] |
Luo B, Chen L, Chen G, Wang Y, Xie Q, et al. 2022. Transcription and metabolism pathways of anthocyanin in purple shamrock (Oxalis triangularis A. St. -Hil.). Metabolites 12:1290 doi: 10.3390/metabo12121290 |
[5] |
Zhang S, Yan S, An P, Cao Q, Wang C, et al. 2021. Embryogenic callus induction from immature zygotic embryos and genetic transformation of Larix kaempferi 3× Larix gmelinii 9. PLoS ONE 16:e0258654 doi: 10.1371/journal.pone.0258654 |
[6] |
Correia S, Matos M, Leal F. 2024. Advances in blueberry (Vaccinium spp.) in vitro culture: a review. Horticulturae 10:533 doi: 10.3390/horticulturae10060533 |
[7] |
Ren J, Zhu Q, Meng Y, Tang F, Xuan Y, et al. 2017. Study on the phenotypic mutation generated from 60Coγ-ray irradiated Oxlias triangularis purpurea regeneration system. Agricultural Science Technology 18:756−759,762 doi: 10.16175/j.cnki.1009-4229.2017.05.002 |
[8] |
Takamizo T, Sato H. 2020. Protocol for Agrobacterium-mediated transformation of tall fescue and future perspective on the application of genome editing. Plant Biotechnology 37:157−61 doi: 10.5511/plantbiotechnology.20.0309a |
[9] |
Ren J, Chen W, Knaflewski M. 2012. Factors affecting asparagus (Asparagus officinalis L.) root development in vitro. Acta Scientiarum Polonorum-Hortorum Cultus 11:107−18 |
[10] |
Lin W, Li Y, Liang J, Liu Y, Chen P, et al. 2024. Establishment of Dendrobium wilsonii Rolfe in vitro regeneration system. Scientia Horticulturae 324:112598 doi: 10.1016/j.scienta.2023.112598 |
[11] |
Zhou J, Guo F, Qi C, Fu J, Xiao Y, et al. 2022. Efficient ex-vitro rooting and acclimatization for tissue culture plantlets of ginger. Plant Cell, Tissue and Organ Culture 150:451−58 doi: 10.1007/s11240-022-02296-3 |
[12] |
Prasuna VNS, Reddy CMN, Rajagopal M, Purna GS, Srinivas Bl. 2022. In vitro flowering and production of seeds in Oxalis corniculata L. - an important medicinal plant. Plant Tissue Culture and Biotechnology 32:193−203 doi: 10.3329/ptcb.v32i2.63553 |
[13] |
Debnath SC. 2009. Zeatin and TDZ-induced shoot proliferation and use of bioreactor in clonal propagation of medicinal herb, roseroot (Rhodiola rosea L.). Journal of Plant Biochemistry and Biotechnology 18:245−48 doi: 10.1007/BF03263329 |
[14] |
Dai C, Yan Y, Liu Y, Liu Y, Deng Y, et al. 2020. The regeneration of Acer rubrum L. "October Glory" through embryonic callus. BMC Plant Biology 20:309 doi: 10.1186/s12870-020-02496-z |
[15] |
Wu L, Wei X, Lu W. 2019. Embryonic callus induction and somatic embryogenesis of Sophora davidii. Scientia Silvae Sinicae 55:170−77 doi: 10.11707/j.1001-7488.20190719 |
[16] |
Li Y, Chen C. 2008. Study on embryonic induction and development conditions of somatic cells of Oxalis triangularis A. St. Hil. Journal of Biology 25:55−57 |
[17] |
Lian Y, Lin G, Zhao X. 2013. Histology and development analysis of meristematic nodules from Cultured Pulsatilla koreana. Chinese Bulletin of Botany 48:540−49 doi: 10.3724/SP.J.1259.2013.00540 |
[18] |
Song H, Mao W, Shuang Y, Zhou W, Li P, et al. 2021. A regeneration system using cotyledons and cotyledonary node explants of Toona ciliata. Journal of Forestry Research 32:967−74 doi: 10.1007/s11676-020-01189-5 |
[19] |
Yang YS, Zheng YD, Chen LY, Jian YY. 1999. Improvement of plant regeneration from long-term cultured calli of Taipei 309, a model rice variety in in vitro studies. Plant Cell, Tissue and Organ Culture 57:199−206 doi: 10.1023/A:1006329323694 |
[20] |
Stevenson Naïtchédé LH, Nyende AB, Runo S, Borlay AJ. 2023. Plant regeneration from embryogenic callus-derived from immature leaves of Momordica charantia L. Heliyon 9:e22122 doi: 10.1016/j.heliyon.2023.e22122 |
[21] |
Tang YP, Liu Q, Gituru RW, Chen LQ. 2010. Callus induction and plant regeneration from in vitro cultured leaves, petioles and scales of Lilium Leucanthum (baker) baker. Biotechnology & Biotechnological Equipment 24:2071−76 doi: 10.2478/V10133-010-0077-4 |
[22] |
Suzana R, Pramesthi AM, Sri Tunjung WA. 2023. Callogenesis, growth and bioactive compounds of kaffir lime (Citrus hystrix DC.) callus derived from leaf and stem explants. Songklanakarin Journal Science and Technology 45:331−40 |
[23] |
Manokari M, Priyadharshini S, Cokulraj M, Dey A, Faisal M, et al. 2022. Exogenous implications of silver nitrate on direct and indirect somatic embryogenesis and germination of cold stored synseeds of Vanilla planifolia Jacks. ex Andrews. South African Journal of Botany 150:129−38 doi: 10.1016/j.sajb.2022.07.019 |
[24] |
Yu Y, Yang B, Ma D, Guo S, Liao F, et al. 2024. Study on the induction of somatic embryogenesis and morphological structural changes during the development of Handeliodendron bodinier L. Plant Cell, Tissue and Organ Culture 156:62 doi: 10.1007/s11240-023-02668-3 |
[25] |
Kim SW, Oh SC, Liu JR. 2003. Control of direct and indirect somatic embryogenesis by exogenous growth regulators in immature zygotic embryo cultures of rose. Plant Cell, Tissue and Organ Culture 74:61−66 doi: 10.1023/A:1023355729046 |
[26] |
Xu D, Liu Y, Liu Y, Huang J, Wu C, et al. 2021. Friable callus induction of Hedera nepalensis var. sinensis. Asian Agricultural Research 13:24−32 doi: 10.22004/ag.econ.316694 |
[27] |
Rittirat S, Klaocheed S, Thammasiri K. 2022. Large scale in vitro micropropagation of an ornamental plant, Oxalis triangularis A. St.-Hil, for commercial application. Acta Horticulturae 1339:245−56 doi: 10.17660/ActaHortic.2022.1339.31 |
[28] |
Dewir YH, Nurmansyah, Naidoo Y, Teixeira da Silva JA. 2018. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Reports 37:1451−70 doi: 10.1007/s00299-018-2326-1 |
[29] |
Huh S, Kim YS, Jung E, Lim J, Jung KS, et al. 2010. Melanogenesis inhibitory effect of fatty acid alkyl esters isolated from Oxalis triangularis. Biological and Pharmaceutical Bulletin 33:1242−45 doi: 10.1248/bpb.33.1242 |
[30] |
Chhabra G, Chaudhary D, Verma M, Sainger M, Jaiwal PK. 2008. TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiology and Molecular Biology of Plants 14:347−53 doi: 10.1007/s12298-008-0033-z |
[31] |
Murthy BNS, Murch SJ, Saxena PK. 1995. Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiologia Plantarum 94:268−76 doi: 10.1111/j.1399-3054.1995.tb05311.x |
[32] |
Nakano M, Watanabe Y, Nomizu T, Suzuki M, Mizunashi K, et al. 2010. Promotion of somatic embryo production from embryogenic calluses of monocotyledonous and dicotyledonous plants by heavy-ion beam irradiation. Plant Growth Regulation 60:169−73 doi: 10.1007/s10725-009-9438-0 |
[33] |
Wang Y, Wang H, Bao W, Sui M, Bai E. 2023. Transcriptome analysis of embryogenic and non-embryogenic callus of Picea Mongolica. Current Issues in Molecular Biology 45:5232−47 doi: 10.3390/cimb45070332 |
[34] |
Redway FA, Vasil V, Lu D, Vasil IK. 1990. Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.). Theoretical and Applied Genetics 79:609−17 doi: 10.1007/BF00226873 |